11 research outputs found

    The anticancer activity of propolis

    Get PDF
    Propolis and its compounds have been the subject of many studies due to their antimicrobial and antiinflammatory activity; however, it is now known that they also possess antitumor properties. This review aims to summarize the results of studies on the mechanism of activity of propolis and its active compounds such as CAPE and chrysin in the apoptotic process, and their influence on the proliferation of cancer cells. Our review shows that propolis and its presented compounds induce apoptosis pathways in cancer cells. The antiproliferative effects of propolis, CAPE or chrysin in cancer cells are the result of the suppression of complexes of cyclins, as well as cell cycle arrest. The results of in vitro and in vivo studies suggest that propolis, CAPE and chrysin may inhibit tumor cell progression and may be useful as potential chemotherapeutic or chemopreventive anticancer drugs

    Propolis changes the anticancer activity of temozolomide in U87MG human glioblastoma cell line

    Get PDF
    BACKGROUND: Propolis is a honey bee product which contains many active compounds, such as CAPE or chrysin, and has many beneficial activities. Recently, its anti-tumor properties have been discussed. We have tested whether the ethanolic extract of propolis (EEP) interferes with temozolomide (TMZ) to inhibit U87MG cell line growth. METHODS: The U87MG glioblastoma cell line was exposed to TMZ (10-100 μM), EEP (10-100 μg/ml) or a mixture of TMZ and EEP during 24, 48 or 72 hours. The cell division was examined by the H(3)-thymidine incorporation, while the western blot method was used for detection of p65 subunit of NF-κB and ELISA test to measure the concentration of its p50 subunit in the nucleus. RESULTS: We have found that both, TMZ and EEP administrated alone, had a dose- and time-dependent inhibitory effect on the U87MG cell line growth, which was manifested by gradual reduction of cell viability and alterations in proliferation rate. The anti-tumor effect of TMZ (20 μM) was enhanced by EEP, which was especially well observed after a short time of exposition, where simultaneous usage of TMZ and EEP resulted in a higher degree of growth inhibition than each biological factor used separately. In addition, cells treated with TMZ presented no changes in NF-κB activity in prolonged time of treatment and EEP only slightly reduced the nuclear translocation of this transcription factor. In turn, the combined incubation with TMZ and EEP led to an approximately double reduction of NF-κB nuclear localization. CONCLUSIONS: We conclude that EEP presents cytotoxic properties and may cooperate with TMZ synergistically enhancing its growth inhibiting activity against glioblastoma U87MG cell line. This phenomenon may be at least partially mediated by a reduced activity of NF-κB

    The anticancer activity of propolis

    No full text
    Propolis and its compounds have been the subject of many studies due to their antimicrobial and antiinflammatory activity; however, it is now known that they also possess antitumor properties. This review aims to summarize the results of studies on the mechanism of activity of propolis and its active compounds such as CAPE and chrysin in the apoptotic process, and their influence on the proliferation of cancer cells. Our review shows that propolis and its presented compounds induce apoptosis pathways in cancer cells. The antiproliferative effects of propolis, CAPE or chrysin in cancer cells are the result of the suppression of complexes of cyclins, as well as cell cycle arrest. The results of in vitro and in vivo studies suggest that propolis, CAPE and chrysin may inhibit tumor cell progression and may be useful as potential chemotherapeutic or chemopreventive anticancer drugs

    Modern Methods for Assessing the Quality of Bee Honey and Botanical Origin Identification

    No full text
    This paper is a summary of the latest literature on methods for assessing quality of natural bee honey. The publication briefly characterizes methods recommended by the International Honey Commission, published in 2009, as well as newer methods published in the last 10 years. Modern methods of assessing honey quality focus mainly on analyzing markers of individual varieties and classifying them into varieties, using, among others, near infrared spectroscopy techniques (NIR), potentiometric tongue, electronic nose, nuclear magnetic resonance (NMR), zymography, polymerase chain reaction (PCR), DNA metabarcoding, and chemometric techniques including partial least squares (PLS), principal component analysis (PCA) and artificial neural networks (ANN). At the same time, effective techniques for analyzing adulteration, sugar, and water content, hydroxymethylfurfural (HMF), polyphenol content, and diastase activity are being sought. Modern techniques enable the results of honey quality testing to be obtained in a shorter time, using the principles of green chemistry, allowing, at the same time, for high precision and accuracy of determinations. These methods are constantly modified, so that the honey that is on sale is a product of high quality. Prospects for devising methods of honey quality assessment include the development of a fast and accurate alternative to the melissopalynological method as well as quick tests to detect adulteration

    Copper, Manganese, Selenium and Zinc in Wild-Growing Edible Mushrooms from the Eastern Territory of “Green Lungs of Poland”: Nutritional and Toxicological Implications

    No full text
    The aims of this study were to determine Cu, Mn, Se, and Zn content in wild mushrooms collected from unpolluted areas of the eastern Green Lungs of Poland (GLP) territory, to compare them to some popular species of cultivated mushrooms, evaluate mushroom contribution to the daily intake of the studied bioelements, and to determine their possible toxic effect resulting from potentially excessive mushroom consumption from areas recognized as ecologically uncontaminated. Bioelements were determined in 21 species of edible mushrooms: eighteen species of wild mushrooms and three species of popular cultivated mushrooms. The mean Cu, Mn, Se, and Zn content (in µg/g, dry mass DM) ranged from 10.6–123.1, 12.2–41, 0.13–13.3, and 68.3–184, respectively. A comparison with recommended dietary allowance (RDA) for Cu, Se, and Zn as well as adequate intake (AI) for Mn demonstrated that a 100 g fresh mass (FM) portion of mushroom species with the highest content of a given element can meet the demand for Cu, Mn, Se and Zn at 203%, 14–17%, 211%, and 16–22%, respectively. A comparison of the content of the examined bioelements contained in one portion of mushrooms (100 g FM) against the toxicological intake limits for different chemical elements with the provisional maximum tolerable daily intake (PMTDI) and upper intake level (UL) showed no risk of toxicity for the evaluated mushroom species

    Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Hair of Children and Adolescents with Myopia

    No full text
    The aim of this work was to determine the concentration of trace elements, zinc, copper, selenium, manganese, and Cu/Zn ratio, in scalp hair samples of children and adolescents with myopia. The study included 92 children (mean age 14.5 ± 2.5 years) with myopia and 43 healthy persons (mean age 11.8 ± 4.7 years). Each patient had a complete eye examination. Trace element concentrations in hair were determined by atomic absorption spectrometry. Cu/Zn ratio was also calculated. The zinc level in the hair of myopic patients was significantly higher (260 µg/g) in comparison to the control group (130 µg/g). There was a significantly lower Cu/Zn ratio in myopic patients (0.045) compared with controls (0.07). An insignificant difference was observed in the hair level of copper, selenium, and manganese between patients and controls. The results show that trace elements may play a significant role in the pathogenesis of myopia. Further studies should pay more attention to determine the effect of trace element on children myopia
    corecore