16 research outputs found

    Aurora-A inactivation causes mitotic spindle pole fragmentation by unbalancing microtubule-generated forces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aurora-A is an oncogenic kinase playing well-documented roles in mitotic spindle organisation. We previously found that Aurora-A inactivation yields the formation of spindles with fragmented poles that can drive chromosome mis-segregation. Here we have addressed the mechanism through which Aurora-A activity regulates the structure and cohesion of spindle poles.</p> <p>Results</p> <p>We inactivated Aurora-A in human U2OS osteosarcoma cells either by RNA-interference-mediated silencing or treating cultures with the specific inhibitor MLN8237. We show that mitotic spindle pole fragmentation induced by Aurora-A inactivation is associated with microtubule hyperstabilisation. Silencing of the microtubule-stabilising factor ch-TOG prevents spindle pole fragmentation caused by inactivation of Aurora-A alone and concomitantly reduces the hyperstabilisation of microtubules. Furthermore, decreasing pole-directed spindle forces by inhibition of the Eg5 kinesin, or by destabilisation of microtubule-kinetochore attachments, also prevents pole fragmentation in Aurora-A-inactivated mitoses.</p> <p>Conclusions</p> <p>Our findings indicate that microtubule-generated forces are imbalanced in Aurora-A-defective cells and exert abnormal pressure at the level of spindle poles, ultimately causing their fragmentation. This study therefore highlights a novel role of the Aurora-A kinase in regulating the balance between microtubule forces during bipolar spindle assembly.</p

    Mitotic cell death induction by targeting the mitotic spindle with tubulin-inhibitory indole derivative molecules

    Get PDF
    Tubulin-targeting molecules are widely used cancer therapeutic agents. They inhibit microtubule-based structures, including the mitotic spindle, ultimately preventing cell division. The final fates of microtubule-inhibited cells are however often heterogeneous and difficult to predict. While recent work has provided insight into the cell response to inhibitors of microtubule dynamics (taxanes), the cell response to tubulin polymerization inhibitors remains less well characterized. Arylthioindoles (ATIs) are recently developed tubulin inhibitors. We previously identified ATI members that effectively inhibit tubulin polymerization in vitro and cancer cell growth in bulk cell viability assays. Here we characterise in depth the response of cancer cell lines to five selected ATIs. We find that all ATIs arrest mitotic progression, yet subsequently yield distinct cell fate profiles in time-lapse recording assays, indicating that molecules endowed with similar tubulin polymerization inhibitory activity in vitro can in fact display differential efficacy in living cells. Individual ATIs induce cytological phenotypes of increasing severity in terms of damage to the mitotic apparatus. That differentially triggers MCL-1 down-regulation and caspase-3 activation, and underlies the terminal fate of treated cells. Collectively, these results contribute to define the cell response to tubulin inhibitors and pinpoint potentially valuable molecules that can increase the molecular diversity of tubulin-targeting agents

    Microglia reactivity entails microtubule remodeling from acentrosomal to centrosomal arrays

    Get PDF
    Microglia reactivity entails a large-scale remodeling of cellular geometry, but the behavior of the microtubule cytoskeleton during these changes remains unexplored. Here we show that activated microglia provide an example of microtubule reorganization from a non-centrosomal array of parallel and stable microtubules to a radial array of more dynamic microtubules. While in the homeostatic state, microglia nucleate microtubules at Golgi outposts, and activating signaling induces recruitment of nucleating material nearby the centrosome, a process inhibited by microtubule stabilization. Our results demonstrate that a hallmark of microglia reactivity is a striking remodeling of the microtubule cytoskeleton and suggest that while pericentrosomal microtubule nucleation may serve as a distinct marker of microglia activation, inhibition of microtubule dynamics may provide a different strategy to reduce microglia reactivity in inflammatory disease

    Microglia control glutamatergic synapses in the adult mouse hippocampus

    Get PDF
    Microglia cells are active players in regulating synaptic development and plasticity in the brain. However, how they influence the normal functioning of synapses is largely unknown. In this study, we characterized the effects of pharmacological microglia depletion, achieved by administration of PLX5622, on hippocampal CA3-CA1 synapses of adult wild type mice. Following microglial depletion, we observed a reduction of spontaneous and evoked glutamatergic activity associated with a decrease of dendritic spine density. We also observed the appearance of immature synaptic features and higher levels of plasticity. Microglia depleted mice showed a deficit in the acquisition of the Novel Object Recognition task. These events were accompanied by hippocampal astrogliosis, although in the absence ofneuroinflammatory condition. PLX-induced synaptic changes were absent in Cx3cr1−/− mice, highlighting the role of CX3CL1/CX3CR1 axis in microglia control of synaptic functioning. Remarkably, microglia repopulation after PLX5622 withdrawal was associated with the recovery of hippocampal synapses and learning functions. Altogether, these data demonstrate that microglia contribute to normal synaptic functioning in the adult brain and that their removal induces reversible changes in organization and activity of glutamatergic synapses

    EGFR mutation testing in pulmonary adenocarcinoma. Evaluation of tumor cell number and tumor percent in paraffin sections of 120 small biopsies

    No full text
    OBJECTIVES: Successful evaluation of EGFR mutational status in small biopsies may be hampered by the number of tumor cells present in the tissue section. The aim of the present study was to determine the minimal number of tumor cells necessary for a reliable EGFR mutation testing in lung adenocarcinoma. MATERIALS AND METHODS: The minimal number of tumor cells was determined experimentally in surgical specimens of 12 EGFR-mutated cases. DNA was extracted from progressively smaller tumor areas obtained with laser capture microdissection and was tested using a real-time PCR technique. The results were then validated in tissue sections of 120 small biopsies, where total number of tumor cells and percent tumor cells were determined in H&E digitalized slides. RESULTS: The laser capture microdissection study revealed that a tumor area of 0.12 mm(2), containing 140 ± 34 tumor cells, was large enough to allow detection of EGFR mutations in 11 of 12 cases. Moreover, it was also demonstrated that EGFR gene amplification and/or chromosomal polysomy could cause a 2-4-fold increase in the sensitivity of the assay. The reliability of these findings was tested in 120 small biopsies containing 26 EGFR-mutated cases. It was found that only a single case had <200 tumor cells, that the EGFR-mutated case with the lowest tumor content had 364 tumor cells occupying a tumor area of 0.12 mm(2), and that 11 of the 26 EGFR-mutated cases (42%) had <20% tumor cells. Finally, the incidence of EGFR-mutated cases in 145 small biopsies (21.4%) was similar to that detected in 132 surgical specimens (20.5%). CONCLUSIONS: Our findings suggest that when a small biopsy contains enough tumor cells to allow a histological diagnosis of adenocarcinoma it probably contains also an adequate number of tumor cells for a successful EGFR mutation testing if a real-time PCR technique is used
    corecore