3 research outputs found

    Scalable processing of cementitious composites reinforced with carbon nanotubes (CNTs) and carbon nanofibers (CNFs)

    Get PDF
    Utilizing the unique properties of CNTs and CNFs to enhance the mechanical and fracture properties of cement based materials and develop smart cementitious nanocomposites can be a challenge in terms of developing scalable manufacturing methods. Scaling up the manufacturing size of CNT and CNF reinforced cement based materials and produce multifunctional concrete that exhibits exceptional strength, stiffness and toughness and multifunctionality requires optimization of dispersion procedure. The effectiveness of successfully using CNTs and CNFs in concrete depends on the fiber count, the volume fraction of sand and coarse aggregates. In this work, we present the flexural strength and stiffness, fracture toughness and brittleness of nanomodified pastes and mortars reinforced at amount of 0.08 and 0.1 wt% and an investigation on the optimization of the fiber count proportioning of concrete. The addition of a very low amount, 0.1 wt%, of both CNTs and CNFs, increases approximately 1.5 times the flexural strength and the Young`s modulus of concrete nanocomposites. The nanomodified concrete also exhibits 60% higher energy absorption capability

    Influence of Different Surfactants on Carbon Fiber Dispersion and the Mechanical Performance of Smart Piezoresistive Cementitious Composites

    No full text
    This experimental study presents the effect of different surfactants on micro-scale carbon fiber (CFs) distribution into carbon fiber reinforced cement-based composites (CFRC) in terms of flexural and compressive strength, stiffness, flexural toughness, and strain-sensing ability. Conducting a narrative review of the literature focusing on the fibers’ separation, this paper follows a methodology introducing a combination of mechanical and chemical carbon fibers dispersion, as well as the different mixing processes (wet or dry). Three types of surfactants: Carboxymethyl cellulose (CMC), cellulose nanocrystal (CNC), and superplasticizer (SP), were applied to evaluate the CFs distribution in the cement paste matrix. Compressive and flexural strength, modulus of elasticity, and ductility of the cement-based composites (CFRC) reinforced with 0.5 wt.% CFs were investigated by three-point bending and compressive tests; flexure tests were also conducted on notched 20 × 20 × 80 mm specimens using the Linear Elastic Fracture Mechanics (L.E.F.M.) theory. Moreover, the electrical conductivity and the piezoresistive response were determined by conducting electrical resistance measurements and applying compressive loading simultaneously. The results clearly reveal that the CFs/SP solution or the CFs’ dry incorporation led to a significant enhancement of flexural strength by 32% and 23.7%, modulus of elasticity by 30% and 20%, and stress-sensing ability by 20.2% and 18.2%, respectively. Although the wet mixing method exhibits improved mechanical and electrical conductivity performance, constituting an adequate strain and crack sensor, the authors propose dry mixing as the most economical method, in addition to the enhanced mechanical and electrical responses. The authors recommend an effective method for structural health monitoring systems combining an economical CFs insertion in cementitious smart sensors with great mechanical and self-sensing responses
    corecore