18 research outputs found
Comprehensive untargeted metabolomics and screening of insect-plant interactions of Lychnnophorinae subtribe (Asteraceae: Vernonieae)
A subtribo Lychnophorinae ocorre na região do Cerrado do Brasil e contém cerca de 120 espécies. Recentemente, a filogenia da subtribo Lychnophorinae, baseada em sequências de DNA e dados morfológicos foi capaz de fornecer novas informações sobre a subtribo e seus gêneros. Além disso, o Cerrado brasileiro possivelmente abriga uma parcela considerável da entomofauna neotropical. Os objetivos gerais deste projeto de pesquisa são obter perfis metabólicos de plantas da subtribo Lychnophorinae e utilizá-los como ferramenta quimiotaxonômica para auxiliar na resolução da classificação taxonômica dessa subtribo e ainda, obter perfis metabólicos de insetos que se alimentem dessas plantas, visando a identificação de possíveis interações inseto-planta. Foram analisadas 78 espécies de plantas por GC-MS e UHPLC-UV(DAD)-MS(ESI-Orbitrap) nos modos positivo e negativo de ionização. As coletas de insetos foram feitas em intervalos trimestrais e, em seguida, esses insetos foram analisados utilizando a mesma metodologia analítica das plantas. As \"impressões digitais\" metabólicas das plantas e dos insetos foram precessadas no MetAlignTM e no MSClust, e as matrizes geradas foram submetidas a análises multivariadas no SIMCA. As plantas foram submetidas a análise de componentes principais (PCA), análise de cluster hierárquico (HCA) e análise discriminante ortogonal por mínimos quadrados parciais (OPLS-DA), entretanto os insetos, juntamente com suas plantas hospedeiras, foram analisados por PCA com o intuito de determinar a correlação entre seus metabólitos secundários. Os resultados das análises metabolômicas apresentaram proximidade com a filogenia principalmente para os dois maiors gêneros, Eremanthus e Lychnophora, analisados separadamente. Portanto, os resultados sugerem que os dados gerados a partir das análises metabolômicas podem ser utilizados em estudos quimiotaxonômicos da subtribo Lychnophorinae, sobretudo como dados primários para a reconstrução filogenética de gêneros. No que diz respeito às análises de possíveis interações inseto-planta, foi possível observar que alguns espécimens apresentaram correlação significativa com as plantas hospedeiras, evidenciando que a abordagem metabolômica pode ser utilizada como ferramenta na investigação de interações inseto-planta. Nestas amostras, pôde-se observar a presença de triterpenos, flavonoides e lactonas sesquiterpênicas adquiridas nas plantas por meio da herbivoria.The subtribe Lychnophorinae occurs in the Cerrado domain of the Brazilian Central Plateau. The relationships among its recognized genera, as well as the relationships between Lychnophorinae and other subtribes belonging in tribe Vernonieae have been recently investigated upon a phylogeny based on molecular and morphological data. In addition, a preliminar overview of insect diversity in Brazilian Cerrado suggests that it may harbor a considerable fraction of the neotropical. We here report the use of a comprehensive untargeted metabolomics approach, combining LC-MS and GC-MS data together, followed by multivariate analyses aiming to assess the congruence between metabolomics data and the phylogenetic hypothesis, as well as its potential as a chemotaxonomic tool. Also we report the use of untargeted metabolomics approach aiming to assess insect-plant interactions. We analyzed 78 species by GC-MS and LC-MS in both positive and negative ionization modes. The metabolic profiles obtained for these species were treated in MetAlign and in MSClust and the matrices generated were combined and used in SIMCA for hierarchical cluster analyses (HCA), principal component analyses (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA). The insects were collected quarterly and analyzed by the same analytical methods as plants. Results show that metabolomics analyses are mostly congruent with the phylogenetic hypothesis especially at lower taxonomic levels. Therefore, our results suggest that data generated by metabolomics approaches provide valuable evidence for chemotaxonomical studies of Lychnophorinae subtribe, in particular as primary data for phylogenetic reconstruction of lineages as genera. Regarding to insects, it was possible to observe significative correlations between some insects and their host plants. In these samples, were able to identify triterpenes, flavonoids and sesquiterpene lactones
Analysis of the ecochemical interaction between the sunflower caterpillar Chlosyne lacinia (Lepidoptera: Nymphalidae) and the Asteraceae Tithonia diversifolia and Vernonia polyanthes using liquid chromatography coupled to mass spectrometry
A lagarta da borboleta Chlosyne lacinia utiliza como plantas hospedeiras quase exclusivamente espécies da família Asteraceae, tais como Vernonia sp e Tithonia diversifolia. V. polyanthes e T. diversifolia apresentam lactonas sesquiterpênicas (LST) em sua constituição química foliar, as quais, entre outras atividades biológicas, podem ser deterrentes e tóxicas para lepidópteras. Os objetivos deste trabalho foram investigar se os metabólitos secundários das Asteraceae V. polyanthes e T. diversifolia são metabolizados, excretados intactos e/ou sequestrados durante a fase larval de C. lacinia, e se são conservados pelo adulto, elucidando, assim, parte da interação ecoquímica da lagarta-do-girassol com Asteraceae. Os extratos das folhas de V. polyanthes e T. diversifolia permitiram a identificação de 22 substâncias entre ácidos clorogênicos, flavonoides e LST. As folhas de V. polyanthes apresentaram 12 destas substâncias, sendo estas, ácidos clorogênicos, flavonoides glicuronizados e LST do subtipo hirsutinolido. Já as folhas de T. diversifolia apresentaram 13 das 22 substâncias, tais como ácidos clorogênicos e LST dos subtipos furanoeliangolido e heliangolido. As lagartas de C. lacinia cultivadas em T. diversifolia se desenvolveram até o quarto estágio completando a metamorfose para a fase adulta, enquanto que as lagartas cultivadas em V. polyanthes se desenvolveram apenas até o segundo estágio. Além disso, o peso médio das lagartas no segundo estágio larval dos três cultivos feitos com T. diversifolia foi estatisticamente maior do que o peso médio das lagartas no mesmo estágio dos três cultivos feitos com V. polyanthes. Assim provavelmente, a diferença na composição química das duas plantas pode ter sido responsável pela diferença na performance de C. lacinia. Além disso, as lagartas no terceiro e no quarto estágios, alimentadas com T. diversifolia, acumularam metabólitos secundários ingeridos a partir das folhas, principalmente LST. Em relação à excreção, as lagartas tratadas com T. diversifolia foram capazes de excretar alguns metabólitos sob a forma inalterada em todos os estágios larvais, já as lagartas tratadas com V. polyanthes excretaram apenas flavonoides glicuronizados sob a forma inalterada e duas flavonas. Enquanto que as lagartas do segundo estágio cultivadas em V. polyanthes, apresentaram acúmulo apenas do flavonoide apigenina-7-O-glicuronil e do ácido 3-O-E-cafeoilquínico hidroxilado. Sugere-se que a presença de flavonoides glicuronizados e LST do subtipo hirsutinolido em V. polyanthes justifica, ao menos parcialmente, o desenvolvimento deficiente e a morte de C. lacinia quando cultivada com esta planta. Por outro lado, a presença de LST dos subtipos furanoeliangolido e heliangolido nas folhas de T. diversifolia podem ser favoráveis ao desenvolvimento completo deste herbívoro na presença desta planta.The caterpillar of Chlosyne lacinia uses almost exclusively Asteraceae species as host plant, such as Vernonia sp and Tithonia diversifolia. V. polyanthes and T. diversifolia show sesquiterpene lactones (STL) in their chemistry composition. STL have biological activities and also can be feeding deterrents and toxics for Lepidoptera. The aims of this study were to investigate whether secondary metabolites of the Asteraceae V. polyanthes and T. diversifolia are metabolized, excreted intact and/or sequestered during larval stage of C. lacinia, and if they are retained by adult, thus explaining a part of the ecochemical interaction between sunflower caterpillar and Asteraceae. The extracts of leaves of V. polyanthes e T. diversifolia allowed the identification of 22 substances among chlorogenic acids, flavonoids and STL. The leaves of V. polyanthes presented 12 of these substances, which were chlorogenic acids, flavonoids glucuronides and STL of hirsutinolide subtype, whereas the leaves of T. diversifolia had 13 of these substances, such as chlorogenic acids and STL of furanoeliangolido and heliangolido subtypes. The caterpillars of C. lacinia cultivated with T. diversifolia developed up to the fourth stage, completing the metamorphosis into adult stage, while the caterpillars cultivated with V. polyanthes developed only until to the second stage. Moreover the average weight of caterpillars in the second stage of three replicates made with T. diversifolia was statistically higher than the average weight of caterpillars at the same stage of the three replicates made with V. polyanthes. The difference in chemical composition of the two plants may has been responsible for the difference in the performance of C. lacinia crops. Also, the caterpillars in the third and fourth stages cultivated with T. diversifolia accumulated secondary metabolites taken from these leaves, mainly STL. Regarding the excretion, caterpillars in all stages fed with T. diversifolia were able to excrete unchanged metabolites, while caterpillars fed with V. polyanthes excreted only unchanged flavonoids glucuronide and the respective aglicones. In the other hand, the caterpillars in the second stage cultivated in V. polyanthes showed that there was only accumulation of apigenin-7-O-glucuronyl and 3-hydroxy-O-E-caffeoylquinic acid. It is suggested that the presence of flavonoids glucuronides and STL of hirsutinolide subtype in V. polyanthes, justify, at least partially, defective development and deaths of C. lacinia cultivated with this plant. While the presence of STL of furanoheliangolide and heliangolide subtypes in T. diversifolia may be favorable to the full development of this herbivore in the presence of this plant
Chemical composition and secretion biology of the floral bouquet in legume trees (Fabaceae).
In the present investigation, we studied the floral bouquet and its associate osmophores in three legume trees using a combination of chemical and ultrastructural analyses, a poorly investigated approach to plant glands. The purpose was to understand the secretory process of osmophores and to identify which of the substances produced are responsible for the attraction of pollinators. Petals from buds and flowers of Bauhinia rufa, Caesalpinia pulcherrima and Hymenaea courbaril were fixed and processed for analysis by transmission electron microscopy. Fresh petals of H. courbaril and C. pulcherrima were also collected, submitted to a headspace solid-phase micro-extraction method and analysed using GC-MS. Typical subcellular features of terpene-secreting osmophores were detected: abundance of mitochondria with conspicuous cristae, plastids with plastoglobuli, rough endoplasmic reticulum and the presence of vesicles and oil droplets in the cytoplasm. Novel subcellular characters of osmophores were detected, such as cellular vacuolation in stages far preceding anthesis and a wealth of dictyosomes. The ultrastructure confirmed that the osmophores produce terpenes and phenolic compounds as previously reported. However, the GC-MS analyses showed that only the terpenes are released and could act on pollinator attraction. The phenolics accumulated are mobilized from these structures and metabolized/reabsorbed by the other plant tissues
Comprehensive untargeted metabolomics of Lychnnophorinae subtribe (Asteraceae: Vernonieae) in a phylogenetic context
<div><p>Members of the subtribe Lychnophorinae occur mostly within the <i>Cerrado</i> domain of the Brazilian Central Plateau. The relationships between its 11 genera, as well as between Lychnophorinae and other subtribes belonging to the tribe Vernonieae, have recently been investigated upon a phylogeny based on molecular and morphological data. We report the use of a comprehensive untargeted metabolomics approach, combining HPLC-MS and GC-MS data, followed by multivariate analyses aiming to assess the congruence between metabolomics data and the phylogenetic hypothesis, as well as its potential as a chemotaxonomic tool. We analyzed 78 species by UHPLC-MS and GC-MS in both positive and negative ionization modes. The metabolic profiles obtained for these species were treated in <i>MetAlign</i> and in <i>MSClust</i> and the matrices generated were used in SIMCA for hierarchical cluster analyses, principal component analyses and orthogonal partial least square discriminant analysis. The results showed that metabolomic analyses are mostly congruent with the phylogenetic hypothesis especially at lower taxonomic levels (<i>Lychnophora</i> or <i>Eremanthus</i>). Our results confirm that data generated using metabolomics provide evidence for chemotaxonomical studies, especially for phylogenetic inference of the Lychnophorinae subtribe and insight into the evolution of the secondary metabolites of this group.</p></div
Species belonging to groups formed in PCA (Fig 1) and HCA (Fig 2).
<p>Species belonging to groups formed in PCA (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0190104#pone.0190104.g001" target="_blank">Fig 1</a>) and HCA (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0190104#pone.0190104.g002" target="_blank">Fig 2</a>).</p
Score scatter plots of principal component analysis (t1 versus t2) of 78 analyzed species from the Lychnophorinae subtribe.
<p>Based on metabolic profiling obtained in LC-MS, in both positive and negative electrospray ionization modes, and in GC-MS. The obtained groups were respectively assigned 1A, 1B, 1C and 1D.</p
Score scatter plots of principal component analysis (t1 versus t2) of <i>Eremanthus</i> species.
<p>Based on metabolic profiling obtained in LC-MS, in both positive and negative electrospray ionization (ESI) modes, and in GC-MS. The obtained groups were respectively assigned 4A, 4B, 4C and 4D.</p
Score scatter plots of principal component analysis (t1 versus t2) of <i>Lychnophora</i> species.
<p>Based on metabolic profiling obtained in LC-MS, in both positive and negative electrospray ionization modes, and in GC-MS. The obtained groups were respectively assigned 3A, 3B, 3C and 3D.</p
Identification of discriminant compounds of each group obtained in OPLS-DA of 78 species from the Lychnophorinae subtribe and data taken from UHPLC-MS and UHPLC-HCD MS/MS analyses.
<p>Identification of discriminant compounds of each group obtained in OPLS-DA of 78 species from the Lychnophorinae subtribe and data taken from UHPLC-MS and UHPLC-HCD MS/MS analyses.</p
Hierarchical cluster analysis of 78 analyzed species from the Lychnophorinae subtribe.
<p>Based on metabolic profiling obtained in LC-MS, in both positive and negative electrospray ionization modes, and in GC-MS.</p