14 research outputs found

    Biologiczne podstawy emocji. Rola stresu w regulacji procesu dojrzewania

    Get PDF
    Emotions are fundamental functions of mammalian brain, essential for survival of an individual, a group and a species, they have biological basis and are mediated by a variety of neurotransmitters and neurohormones acting on specific brain structures. Stress is state of disturbed homeostasis, which generates a spectrum of adaptive physiological reactions in an organism, which promote individual’s survival or survival of a species. One such adaptive mechanism includes control by stress (via stress hormones) of reproductive functions by either delaying or accelerating puberty

    Neonatal Administration of Thimerosal Causes Persistent Changes in Mu Opioid Receptors in the Rat Brain

    Get PDF
    Thimerosal added to some pediatric vaccines is suspected in pathogenesis of several neurodevelopmental disorders. Our previous study showed that thimerosal administered to suckling rats causes persistent, endogenous opioid-mediated hypoalgesia. Here we examined, using immunohistochemical staining technique, the density of μ-opioid receptors (MORs) in the brains of rats, which in the second postnatal week received four i.m. injections of thimerosal at doses 12, 240, 1,440 or 3,000 μg Hg/kg. The periaqueductal gray, caudate putamen and hippocampus were examined. Thimerosal administration caused dose-dependent statistically significant increase in MOR densities in the periaqueductal gray and caudate putamen, but decrease in the dentate gyrus, where it was accompanied by the presence of degenerating neurons and loss of synaptic vesicle marker (synaptophysin). These data document that exposure to thimerosal during early postnatal life produces lasting alterations in the densities of brain opioid receptors along with other neuropathological changes, which may disturb brain development

    Administration of Thimerosal to Infant Rats Increases Overflow of Glutamate and Aspartate in the Prefrontal Cortex: Protective Role of Dehydroepiandrosterone Sulfate

    Get PDF
    Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10–14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity

    Advanced Oxidation Protein Products and Carbonylated Proteins Levels in Endovascular and Open Repair of an Abdominal Aortic Aneurysm: The Effect of Pre-, Intra-, and Postoperative Treatment

    No full text
    Background. In recent years, a rapid increase in studies focusing on the role of oxidative stress in the pathogenesis of an abdominal aortic aneurysm (AAA) has been observed. Oxidative modifications of proteins are infrequently evaluated in reference to AAA. Objectives. The intensity of oxidative protein modifications, presented as advanced oxidation protein products (AOPP) and carbonylated proteins (C=O), in AAA patients qualified for surgery was estimated. The effect of surgical techniques and intraoperative and postoperative treatment on AOPP and C=O levels was evaluated. Patients. The EVAR group, consisting of 30 patients, was classified for endovascular aneurysm repair, whereas 28 patients were classified for conventional open repair (OR). Methods. AOPP and C=O were measured using a colorimetric assay kit. Results. A significantly lower AOPP level obtained 2-4 days after EVAR surgery in comparison with the value found before surgery was noted. In the case of OR postoperative treatment, a tendency of AOPP level to increase was observed. The tendency of C=O to decrease after surgery in the EVAR group was indicated. However, the C=O level tended to increase after OR surgery and reached a significantly higher value 5-7 days after surgery compared with the value obtained before surgery. Conclusions. Based on our results, it may be concluded that AAA as well as surgical technique contribute to the formation of AOPP and C=O. The analysis of changes in AOPP and C=O values obtained after surgery revealed a significant effect of a patient’s condition before surgery as well as the choice of surgery technique on the values of the studied parameters revealed during postoperative treatment
    corecore