4 research outputs found

    Sol-Gel Derived Mg-Based Ceramic Scaffolds Doped with Zinc or Copper Ions: Preliminary Results on Their Synthesis, Characterization, and Biocompatibility

    Get PDF
    Glass-ceramic scaffolds containing Mg have shown recently the potential to enhance the proliferation, differentiation, and biomineralization of stem cells in vitro, property that makes them promising candidates for dental tissue regeneration. An additional property of a scaffold aimed at dental tissue regeneration is to protect the regeneration process against oral bacteria penetration. In this respect, novel bioactive scaffolds containing Mg2+ and Cu2+ or Zn2+, ions known for their antimicrobial properties, were synthesized by the foam replica technique and tested regarding their bioactive response in SBF, mechanical properties, degradation, and porosity. Finally their ability to support the attachment and long-term proliferation of Dental Pulp Stem Cells (DPSCs) was also evaluated. The results showed that conversely to their bioactive response in SBF solution, Zn-doped scaffolds proved to respond adequately regarding their mechanical strength and to be efficient regarding their biological response, in comparison to Cu-doped scaffolds, which makes them promising candidates for targeted dental stem cell odontogenic differentiation and calcified dental tissue engineering

    Advances on Biomedical Titanium Surface Interactions

    No full text

    A Review of In Vivo and Clinical Studies Applying Scaffolds and Cell Sheet Technology for Periodontal Ligament Regeneration

    No full text
    Different approaches to develop engineered scaffolds for periodontal tissues regeneration have been proposed. In this review, innovations in stem cell technology and scaffolds engineering focused primarily on Periodontal Ligament (PDL) regeneration are discussed and analyzed based on results from pre-clinical in vivo studies and clinical trials. Most of those developments include the use of polymeric materials with different patterning and surface nanotopography and printing of complex and sophisticated multiphasic composite scaffolds with different compartments to accomodate for the different periodontal tissues’ architecture. Despite the increased effort in producing these scaffolds and their undoubtable efficiency to guide and support tissue regeneration, appropriate source of cells is also needed to provide new tissue formation and various biological and mechanochemical cues from the Extraccellular Matrix (ECM) to provide biophysical stimuli for cell growth and differentiation. Cell sheet engineering is a novel promising technique that allows obtaining cells in a sheet format while preserving ECM components. The right combination of those factors has not been discovered yet and efforts are still needed to ameliorate regenerative outcomes towards the functional organisation of the developed tissues

    <i>Artemisinin</i> Loaded Cerium-Doped Nanopowders Improved In Vitro the Biomineralization in Human Periodontal Ligament Cells

    No full text
    Background: A promising strategy to enhance bone regeneration is the use of bioactive materials doped with metallic ions with therapeutic effects and their combination with active substances and/or drugs. The aim of the present study was to investigate the osteogenic capacity of human periodontal ligament cells (hPDLCs) in culture with artemisinin (ART)-loaded Ce-doped calcium silicate nanopowders (NPs); Methods: Mesoporous silica, calcium-doped and calcium/cerium-doped silicate NPs were synthesized via a surfactant-assisted cooperative self-assembly process. Human periodontal ligament cells (hPDLCs) were isolated and tested for their osteogenic differentiation in the presence of ART-loaded and unloaded NPs through alkaline phosphatase (ALP) activity and Alizarine red S staining, while their antioxidant capacity was also evaluated; Results: ART promoted further the osteogenic differentiation of hPDLCs in the presence of Ce-doped NPs. Higher amounts of Ce in the ART-loaded NPs inversely affected the mineral deposition process by the hPDLCs. ART and Ce in the NPs have a synergistic role controlling the redox status and reducing ROS production from the hPDLCs; Conclusions: By monitoring the Ce amount and ART concentration, mesoporous NPs with optimum properties can be developed towards bone tissue regeneration demonstrating also potential application in periodontal tissue regeneration strategies
    corecore