33 research outputs found
Genetic 3’UTR variation is associated with human pigmentation characteristics and sensitivity to sunlight
Sunlight exposure induces signalling pathways leading to the activation of melanin synthesis and tanning response. MicroRNAs (miRNAs) can regulate the expression of genes involved in pigmentation pathways by binding to the complementary sequence in their 3′untranslated regions (3′UTRs). Therefore, 3′UTR SNPs are predicted to modify the ability of miRNAs to target genes, resulting in differential gene expression. In this study, we investigated the role in pigmentation and sun-sensitivity traits, as well as in melanoma susceptibility, of 38 different 3′UTR SNPs from 38 pigmentation-related genes. A total of 869 individuals of Spanish origin (526 melanoma cases and 343 controls) were analysed. The association of genotypic data with pigmentation traits was analysed via logistic regression. Web-based tools for predicting the effect of genetic variants in microRNA-binding sites in 3′UTR gene regions were also used. Seven 3′UTR SNPs showed a potential implication in melanoma risk phenotypes. This association is especially noticeable for two of them, rs2325813 in the MLPH gene and rs752107 in the WNT3A gene. These two SNPs were predicted to disrupt a miRNA-binding site and to impact on miRNA-mRNA interaction. To our knowledge, this is the first time that these two 3′UTR SNPs have been associated with sun-sensitivity traits. We state the potential implication of these SNPs in human pigmentation and sensitivity to sunlight, possibly as a result of changes in the level of gene expression through the disruption of putative miRNA-binding sites
MicroRNA profile in very young women with breast cancer
BACKGROUND: Breast cancer is rarely diagnosed in very young women (35 years old or younger), and it often presents with distinct clinical-pathological features related to a more aggressive phenotype and worse prognosis when diagnosed at this early age. A pending question is whether breast cancer in very young women arises from the deregulation of different underlying mechanisms, something that will make this disease an entity differentiated from breast cancer diagnosed in older patients. METHODS: We performed a comprehensive study of miRNA expression using miRNA Affymetrix2.0 array on paraffin-embedded tumour tissue of 42 breast cancer patients 35 years old or younger, 17 patients between 45 and 65 years old and 29 older than 65 years. Data were statistically analyzed by t-test and a hierarchical clustering via average linkage method was conducted. Results were validated by qRT-PCR. Putative targeted pathways were obtained using DIANA miRPath online software. RESULTS: The results show a differential and unique miRNA expression profile of 121 miRNAs (p-value <0.05), 96 of those with a FDR-value <0.05. Hierarchical clustering grouped the samples according to their age, but not by subtype nor by tumour characteristics. We were able to validate by qRT-PCR differences in the expression of 6 miRNAs: miR-1228*, miR-3196, miR-1275, miR-92b, miR-139 and miR-1207. Moreover, all of the miRNAs maintained the expression trend. The validated miRNAs pointed out pathways related to cell motility, invasion and proliferation. CONCLUSIONS: The study suggests that breast cancer in very young women appears as a distinct molecular signature. To our knowledge, this is the first time that a validated microRNA profile, distinctive to breast cancer in very young women, has been presented. The miRNA signature may be relevant to open an important field of research in order to elucidate the underlying mechanism in this particular disease, which in a more clinical setting, could potentially help to identify therapeutic targets in this particular set of patients.MPC is funded by the Generalitat Valenciana VALi + d, ACIF/2011/270. MTM is funded by”Rio Hortega Project” (CM12/00264). GR is a FIS “Miquel Servet” Researcher. AB holds a Translational Research Grant awarded by the Spanish Society of Medical Oncology (SEOM). This project was carried out thanks to Fundación LeCadó – proyecto Flor de Vida and co-funded by FIS project PI13/00606 and FEDER. We would like to give thanks to all the patients and volunteers for their participation and also to the INCLIVA Biobank, integrated into the Spanish Hospital Biobanks Network (ReTBioH) and supported by the Instituto de Salud Carlos III/FEDER (grant number: RD09/0076/00132). We also wish to thank several private Breast cancer associations that funded this study and the Unit for Multigenic Analysis from the Central Unit for Medical Research (UCIM/INCLIVA) for the performance of the Affymetrix microRNA profiles.S
Visualization of automatically combined disease maps and pathway diagrams for rare diseases.
peer reviewedIntroduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/
Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches
Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing.
Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.
Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19.
Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.Peer Reviewe
Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches
IntroductionThe COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. MethodsExtensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.ResultsResults revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. DiscussionThe key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies
A Customized Pigmentation SNP Array Identifies a Novel SNP Associated with Melanoma Predisposition in the SLC45A2 Gene
As the incidence of Malignant Melanoma (MM) reflects an interaction between skin colour and UV exposure, variations in genes implicated in pigmentation and tanning response to UV may be associated with susceptibility to MM. In this study, 363 SNPs in 65 gene regions belonging to the pigmentation pathway have been successfully genotyped using a SNP array. Five hundred and ninety MM cases and 507 controls were analyzed in a discovery phase I. Ten candidate SNPs based on a p-value threshold of 0.01 were identified. Two of them, rs35414 (SLC45A2) and rs2069398 (SILV/CKD2), were statistically significant after conservative Bonferroni correction. The best six SNPs were further tested in an independent Spanish series (624 MM cases and 789 controls). A novel SNP located on the SLC45A2 gene (rs35414) was found to be significantly associated with melanoma in both phase I and phase II (P<0.0001). None of the other five SNPs were replicated in this second phase of the study. However, three SNPs in TYR, SILV/CDK2 and ADAMTS20 genes (rs17793678, rs2069398 and rs1510521 respectively) had an overall p-value<0.05 when considering the whole DNA collection (1214 MM cases and 1296 controls). Both the SLC45A2 and the SILV/CDK2 variants behave as protective alleles, while the TYR and ADAMTS20 variants seem to function as risk alleles. Cumulative effects were detected when these four variants were considered together. Furthermore, individuals carrying two or more mutations in MC1R, a well-known low penetrance melanoma-predisposing gene, had a decreased MM risk if concurrently bearing the SLC45A2 protective variant. To our knowledge, this is the largest study on Spanish sporadic MM cases to date
COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms.
Funder: Bundesministerium für Bildung und ForschungFunder: Bundesministerium für Bildung und Forschung (BMBF)We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective
CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative
Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
Modelling MC1R rare variants: A structural evaluation of variants detected in a Mediterranean case-control study
4 páginas, 1 figura.This study was supported by a Grant from the Ministerio de Salud Carlos III (ISCIII) (FI10-00405) and Ministerio de Economia y Competitividad (SAF2012-31405). MP-C is funded by the VALi+d from the Generalitat Valenciana (ACIF/2011/207). MJLC is funded by the Generalitat Valenciana under a Geronimo Forteza contrat (FPA/2013/A/037). GR is funded by the Ministerio de Salud Carlos III under a ‘Miquel Servet’ contract (CP08-00069). We thank the Madrid College of Lawyers and all the participants from all contributing Hospitals.Peer reviewe
Drug repurposing for COVID-19 using machine learning and mechanistic models of signal transduction circuits related to SARS-CoV-2 infection
Drug repurposing is a convenient alternative when the need for
new drugs in an unexpected medical scenario is urgent, as is the
case of emerging pathogens. In recent years, approaches based
on network biology have demonstrated to be superior to genecentric ones.1 Here, we use an innovative methodology that
combines mechanistic modeling of the signal transduction circuits
related to SARS-CoV-2 infection (the COVID-19 disease map) with a
machine-learning algorithm that learns potential causal interactions between proteins, already targets of drugs, and specific
signaling circuits in the COVID-19 disease map, to suggest
potentially repurposable drugs.This work is supported by grants SAF2017-88908-R from the Spanish Ministry of
Economy and Competitiveness, PT17/0009/0006, ACCI2018/29 from CIBER-ISCIII and
COV20/00788 from the ISCIII, co-funded with European Regional Development Funds
(ERDF), the grant “Large-scale drug repurposing in rare diseases by genomic Big Data
analysis with machine learning methods” from the Fundación BBVA (G999088Q), as well
as H2020 Programme of the European Union grants Marie Curie Innovative Training
Network “Machine Learning Frontiers in Precision Medicine” (MLFPM) (GA 813533)