2 research outputs found

    Search for photons with energies above 1018eV using the hybrid detector of the Pierre Auger Observatory

    Get PDF
    A search for ultra-high energy photons with energies above 1EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1\u20132EeV are found, which is compatible with the expected hadron induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km 122 sr 121 yr 121 are derived at 95% C.L. for energy thresholds of 1, 2, 3, 5 and 10EeV. These limits bound the fractions of photons in the all-particle integral flux below 0.1%, 0.15%, 0.33%, 0.85% and 2.7%. For the first time the photon fraction at EeV energies is constrained at the sub-percent level. The improved limits are below the flux of diffuse photons predicted by some astrophysical scenarios for cosmogenic photon production. The new results rule-out the early top-down models 12 in which ultra-high energy cosmic rays are produced by, e.g., the decay of super-massive particles 12 and challenge the most recent super-heavy dark matter model

    Search for ultrarelativistic magnetic monopoles with the Pierre Auger Observatory

    Get PDF
    We present a search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory. Such particles, possibly a relic of phase transitions in the early Universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air-shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultrarelativistic magnetic monopoles range from 10^ 1219(cm2 sr s)^ 121 for a Lorentz factor \u3b3 = 10^9 to 2.5 7 10 1221(cm2 sr s)^ 121 for \u3b3 = 10^12. These results\u2014the first obtained with a UHECR detector\u2014improve previously published limits by up to an order of magnitude
    corecore