1,892 research outputs found
A common stochastic process rules gamma-ray burst prompt emission and X-ray flares
Prompt gamma-ray and early X-ray afterglow emission in gamma-ray bursts
(GRBs) are characterized by a bursty behavior and are often interspersed with
long quiescent times. There is compelling evidence that X-ray flares are linked
to prompt gamma-rays. However, the physical mechanism that leads to the complex
temporal distribution of gamma-ray pulses and X-ray flares is not understood.
Here we show that the waiting time distribution (WTD) of pulses and flares
exhibits a power-law tail extending over 4 decades with index ~2 and can be the
manifestation of a common time-dependent Poisson process. This result is robust
and is obtained on different catalogs. Surprisingly, GRBs with many (>=8)
gamma-ray pulses are very unlikely to be accompanied by X-ray flares after the
end of the prompt emission (3.1 sigma Gaussian confidence). These results are
consistent with a simple interpretation: an hyperaccreting disk breaks up into
one or a few groups of fragments, each of which is independently accreted with
the same probability per unit time. Prompt gamma-rays and late X-ray flares are
nothing but different fragments being accreted at the beginning and at the end,
respectively, following the very same stochastic process and likely the same
mechanism.Comment: 11 pages, 7 figures, accepted by Ap
Constraints on the environment and energetics of the Broad-Line Ic SN2014ad from deep radio and X-ray observations
Broad-line type Ic Supernovae (BL-Ic SNe) are characterized by high ejecta
velocity ( km s) and are sometimes associated with the
relativistic jets typical of long duration ( s) Gamma-Ray Bursts
(L-GRBs). The reason why a small fraction of BL-Ic SNe harbor relativistic jets
is not known. Here we present deep X-ray and radio observations of the BL-Ic
SN2014ad extending from to days post explosion. SN2014ad was not
detected at either frequency and has no observational evidence of a GRB
counterpart. The proximity of SN2014ad ( Mpc) enables very deep
constraints on the progenitor mass-loss rate and on the total energy
of the fast ejecta . We consider two synchrotron emission scenarios for a
wind-like circumstellar medium (CSM): (i) uncollimated non-relativistic ejecta,
and (ii) off-axis relativistic jet. Within the first scenario our observations
are consistent with GRB-less BL-Ic SNe characterized by a modest energy budget
of their fast ejecta ( erg), like SNe 2002ap and 2010ay.
For jetted explosions, we cannot rule out a GRB with erg
(beam-corrected) with a narrow opening angle ()
observed moderately off-axis () and
expanding in a very low CSM density ( M
yr). Our study shows that off-axis low-energy jets expanding in a
low-density medium cannot be ruled out even in the most nearby BL-Ic SNe with
extensive deep observations, and might be a common feature of BL-Ic SNe.Comment: 9 pages, 5 figures, accepted in Ap
Dust in the wind: the role of recent mass loss in long gamma-ray bursts
We study the late-time (t>0.5 days) X-ray afterglows of nearby (z<0.5) long
Gamma-Ray Bursts (GRB) with Swift and identify a population of explosions with
slowly decaying, super-soft (photon index Gamma_x>3) X-ray emission that is
inconsistent with forward shock synchrotron radiation associated with the
afterglow. These explosions also show larger-than-average intrinsic absorption
(NH_x,i >6d21 cm-2) and prompt gamma-ray emission with extremely long duration
(T_90>1000 s). Chance association of these three rare properties (i.e. large
NH_x,i, super-soft Gamma_x and extreme duration) in the same class of
explosions is statistically unlikely. We associate these properties with the
turbulent mass-loss history of the progenitor star that enriched and shaped the
circum-burst medium. We identify a natural connection between NH_x,i Gamma_x
and T_90 in these sources by suggesting that the late-time super-soft X-rays
originate from radiation reprocessed by material lost to the environment by the
stellar progenitor before exploding, (either in the form of a dust echo or as
reprocessed radiation from a long-lived GRB remnant), and that the interaction
of the explosion's shock/jet with the complex medium is the source of the
extremely long prompt emission. However, current observations do not allow us
to exclude the possibility that super-soft X-ray emitters originate from
peculiar stellar progenitors with large radii that only form in very dusty
environments.Comment: 6 pages, Submitted to Ap
- …