3,063 research outputs found

    Game-Theoretic, Interposable Communication

    Full text link
    Recent advances in distributed epistemologies and ubiquitous configurations have paved the way for superpages. Here, we show the explo- ration of thin clients. Here we disprove not only that superpages can be made “fuzzy”, “fuzzy”, and knowledge-based, but that the same is true for the UNIVAC computer

    A review of IATTC research on the early life history and reproductive biology of scombrids conducted at the Achotines Laboratory from 1985 to 2005

    Get PDF
    English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera

    Spawning and early development of captive yellowfin tuna (Thunnus albacares)

    Get PDF
    In this study we describe the courtship and spawning behaviors of captive yellowfin tuna (Thunnus albacares), their spawning periodicity, the influence of physical and biological factors on spawning and hatching, and egg and early-larval development of this species at the Achotines Laboratory, Republic of Panama, during October 1996 through March 2000. Spawning occurred almost daily over extended periods and at water temperatures from 23.3° to 29.7°C. Water temperature appeared to be the main exogenous factor controlling the occurrence and timing of spawning. Courtship and spawning behaviors were ritualized and consistent among three groups of broodstock over 3.5 years. For any date, the time of day of spawning (range: 1330 to 2130 h) was predictable from mean daily water temperature, and 95% of hatching occurred the next day between 1500 and 1900 h. We estimated that females at first spawning averaged 1.6−2.0 years of age. Over short time periods (<1 month), spawning females increased their egg production from 30% to 234% in response to shortterm increases in daily food ration of 9% to 33%. Egg diameter, notochord length (NL) at hatching, NL at first feeding, and dry weights of these stages were estimated. Water temperature was significantly, inversely related to egg size, egg-stage duration, larval size at hatching, and yolksac larval duration

    miRNA detection methods and clinical implications in lung cancer

    Full text link
    [EN] Lung cancer is the leading cause of cancer death worldwide. Therefore, advances in the diagnosis and treatment of the disease are urgently needed. miRNAs are a family of small, noncoding RNAs that regulate gene expression at the transcriptional level. miRNAs have been reported to be deregulated and to play a critical role in different types of cancer, including lung cancer. Thus, miRNA profiling in lung cancer patients has become the core of several investigations. To this end, the development of a multitude of platforms for miRNA profiling analysis has been essential. This article focuses on the different technologies available for assessing miRNAs and the most important results obtained to date in lung cancer.This study was partially supported by a grant from the Ministerio de Ciencia e Inovacion de Espana (TRA09-0132), Beca Roche en Onco-Hematologia 2009 and Red Tematica de Investigacion Cooperativa en Cancer (RD12/0036/0025). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.Usó, M.; Jantus Lewintre, E.; Sirera Pérez, R.; Bremnes, RM.; Camps, C. (2014). miRNA detection methods and clinical implications in lung cancer. Future Oncology. 10(14):2279-2292. https://doi.org/10.2217/FON.14.93S227922921014Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69-90. doi:10.3322/caac.20107Herbst, R. S., Heymach, J. V., & Lippman, S. M. (2008). Lung Cancer. New England Journal of Medicine, 359(13), 1367-1380. doi:10.1056/nejmra0802714Ferlay, J., Parkin, D. M., & Steliarova-Foucher, E. (2010). Estimates of cancer incidence and mortality in Europe in 2008. European Journal of Cancer, 46(4), 765-781. doi:10.1016/j.ejca.2009.12.014Goldstraw, P., Crowley, J., Chansky, K., Giroux, D. J., Groome, P. A., Rami-Porta, R., … Sobin, L. (2007). The IASLC Lung Cancer Staging Project: Proposals for the Revision of the TNM Stage Groupings in the Forthcoming (Seventh) Edition of the TNM Classification of Malignant Tumours. Journal of Thoracic Oncology, 2(8), 706-714. doi:10.1097/jto.0b013e31812f3c1aLee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854. doi:10.1016/0092-8674(93)90529-yWinter, J., Jung, S., Keller, S., Gregory, R. I., & Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 11(3), 228-234. doi:10.1038/ncb0309-228Lai, E. C. (2002). Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics, 30(4), 363-364. doi:10.1038/ng865Stark, A., Brennecke, J., Bushati, N., Russell, R. B., & Cohen, S. M. (2005). Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution. Cell, 123(6), 1133-1146. doi:10.1016/j.cell.2005.11.023Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A. (2007). microRNAs as oncogenes and tumor suppressors. Developmental Biology, 302(1), 1-12. doi:10.1016/j.ydbio.2006.08.028Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., … Croce, C. M. (2002). Nonlinear partial differential equations and applications: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 99(24), 15524-15529. doi:10.1073/pnas.242606799Landi, M. T., Zhao, Y., Rotunno, M., Koshiol, J., Liu, H., Bergen, A. W., … Wang, E. (2010). MicroRNA Expression Differentiates Histology and Predicts Survival of Lung Cancer. Clinical Cancer Research, 16(2), 430-441. doi:10.1158/1078-0432.ccr-09-1736Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., … Takahashi, T. (2004). Reduced Expression of thelet-7MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival. Cancer Research, 64(11), 3753-3756. doi:10.1158/0008-5472.can-04-0637Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S.-S., Ngankeu, A., … Croce, C. M. (2009). miR-221&222 Regulate TRAIL Resistance and Enhance Tumorigenicity through PTEN and TIMP3 Downregulation. Cancer Cell, 16(6), 498-509. doi:10.1016/j.ccr.2009.10.014Gallardo, E., Navarro, A., Viñolas, N., Marrades, R. M., Diaz, T., Gel, B., … Monzo, M. (2009). miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis, 30(11), 1903-1909. doi:10.1093/carcin/bgp219Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., … Golub, T. R. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834-838. doi:10.1038/nature03702Xi, Y., Nakajima, G., Gavin, E., Morris, C. G., Kudo, K., Hayashi, K., & Ju, J. (2007). Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA, 13(10), 1668-1674. doi:10.1261/rna.642907Shen, J., & Jiang, F. (2012). Applications of microRNAs in the diagnosis and prognosis of lung cancer. Expert Opinion on Medical Diagnostics, 6(3), 197-207. doi:10.1517/17530059.2012.672970Doleshal, M., Magotra, A. A., Choudhury, B., Cannon, B. D., Labourier, E., & Szafranska, A. E. (2008). Evaluation and Validation of Total RNA Extraction Methods for MicroRNA Expression Analyses in Formalin-Fixed, Paraffin-Embedded Tissues. The Journal of Molecular Diagnostics, 10(3), 203-211. doi:10.2353/jmoldx.2008.070153Taylor, D. D., & Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 110(1), 13-21. doi:10.1016/j.ygyno.2008.04.033Ibberson, D., Benes, V., Muckenthaler, M. U., & Castoldi, M. (2009). RNA degradation compromises the reliability of microRNA expression profiling. BMC Biotechnology, 9(1), 102. doi:10.1186/1472-6750-9-102Yin, J. Q., Zhao, R. C., & Morris, K. V. (2008). Profiling microRNA expression with microarrays. Trends in Biotechnology, 26(2), 70-76. doi:10.1016/j.tibtech.2007.11.007Beuvink, I., Kolb, F. A., Budach, W., Garnier, A., Lange, J., Natt, F., … Weiler, J. (2007). A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Research, 35(7), e52. doi:10.1093/nar/gkl1118Raponi, M., Dossey, L., Jatkoe, T., Wu, X., Chen, G., Fan, H., & Beer, D. G. (2009). MicroRNA Classifiers for Predicting Prognosis of Squamous Cell Lung Cancer. Cancer Research, 69(14), 5776-5783. doi:10.1158/0008-5472.can-09-0587Benes, V., & Castoldi, M. (2010). Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods, 50(4), 244-249. doi:10.1016/j.ymeth.2010.01.026Dijkstra, J. R., Mekenkamp, L. J. M., Teerenstra, S., De Krijger, I., & Nagtegaal, I. D. (2012). MicroRNA expression in formalin-fixed paraffin embedded tissue using real time quantitative PCR: the strengths and pitfalls. Journal of Cellular and Molecular Medicine, 16(4), 683-690. doi:10.1111/j.1582-4934.2011.01467.xChen, C. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33(20), e179-e179. doi:10.1093/nar/gni178Lao, K., Xu, N. L., Yeung, V., Chen, C., Livak, K. J., & Straus, N. A. (2006). Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochemical and Biophysical Research Communications, 343(1), 85-89. doi:10.1016/j.bbrc.2006.02.106Mestdagh, P., Feys, T., Bernard, N., Guenther, S., Chen, C., Speleman, F., & Vandesompele, J. (2008). High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Research, 36(21), e143-e143. doi:10.1093/nar/gkn725Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nature Protocols, 1(3), 1559-1582. doi:10.1038/nprot.2006.236Zipper, H. (2004). Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Research, 32(12), e103-e103. doi:10.1093/nar/gnh101Mohammadian, A., Mowla, S. J., Elahi, E., Tavallaei, M., Nourani, M. R., & Liang, Y. (2013). Normalization of miRNA qPCR high-throughput data: a comparison of methods. Biotechnology Letters, 35(6), 843-851. doi:10.1007/s10529-013-1150-5Xie, Y., Todd, N. W., Liu, Z., Zhan, M., Fang, H., Peng, H., … Jiang, F. (2010). Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer, 67(2), 170-176. doi:10.1016/j.lungcan.2009.04.004Yu, S.-L., Chen, H.-Y., Chang, G.-C., Chen, C.-Y., Chen, H.-W., Singh, S., … Yang, P.-C. (2008). MicroRNA Signature Predicts Survival and Relapse in Lung Cancer. Cancer Cell, 13(1), 48-57. doi:10.1016/j.ccr.2007.12.008Mascaux, C., Laes, J. F., Anthoine, G., Haller, A., Ninane, V., Burny, A., & Sculier, J. P. (2008). Evolution of microRNA expression during human bronchial squamous carcinogenesis. European Respiratory Journal, 33(2), 352-359. doi:10.1183/09031936.00084108Silva, J., Garcia, V., Zaballos, A., Provencio, M., Lombardia, L., Almonacid, L., … Bonilla, F. (2010). Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. European Respiratory Journal, 37(3), 617-623. doi:10.1183/09031936.00029610Berghmans, T., Ameye, L., Willems, L., Paesmans, M., Mascaux, C., Lafitte, J. J., … Sculier, J. P. (2013). Identification of microRNA-based signatures for response and survival for non-small cell lung cancer treated with cisplatin-vinorelbine A ELCWP prospective study. Lung Cancer, 82(2), 340-345. doi:10.1016/j.lungcan.2013.07.020Hennessey, P. T., Sanford, T., Choudhary, A., Mydlarz, W. W., Brown, D., Adai, A. T., … Califano, J. A. (2012). Serum microRNA Biomarkers for Detection of Non-Small Cell Lung Cancer. PLoS ONE, 7(2), e32307. doi:10.1371/journal.pone.0032307Skrzypski, M., Czapiewski, P., Goryca, K., Jassem, E., Wyrwicz, L., Pawłowski, R., … Jassem, J. (2014). Prognostic value of microRNA expression in operable non-small cell lung cancer patients. British Journal of Cancer, 110(4), 991-1000. doi:10.1038/bjc.2013.786Cazzoli, R., Buttitta, F., Di Nicola, M., Malatesta, S., Marchetti, A., Rom, W. N., & Pass, H. I. (2013). microRNAs Derived from Circulating Exosomes as Noninvasive Biomarkers for Screening and Diagnosing Lung Cancer. Journal of Thoracic Oncology, 8(9), 1156-1162. doi:10.1097/jto.0b013e318299ac32Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., … Barshack, I. (2008). MicroRNAs accurately identify cancer tissue origin. Nature Biotechnology, 26(4), 462-469. doi:10.1038/nbt1392Boeri, M., Verri, C., Conte, D., Roz, L., Modena, P., Facchinetti, F., … Sozzi, G. (2011). MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proceedings of the National Academy of Sciences, 108(9), 3713-3718. doi:10.1073/pnas.1100048108Yu, L., Todd, N. W., Xing, L., Xie, Y., Zhang, H., Liu, Z., … Jiang, F. (2010). Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. International Journal of Cancer, 127(12), 2870-2878. doi:10.1002/ijc.25289Xing, L., Todd, N. W., Yu, L., Fang, H., & Jiang, F. (2010). Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Modern Pathology, 23(8), 1157-1164. doi:10.1038/modpathol.2010.111Shen, J., Todd, N. W., Zhang, H., Yu, L., Lingxiao, X., Mei, Y., … Jiang, F. (2010). Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Laboratory Investigation, 91(4), 579-587. doi:10.1038/labinvest.2010.194Campayo, M., Navarro, A., Viñolas, N., Diaz, T., Tejero, R., Gimferrer, J. M., … Marrades, R. (2012). Low miR-145 and high miR-367 are associated with unfavourable prognosis in resected nonsmall cell lung cancer. European Respiratory Journal, 41(5), 1172-1178. doi:10.1183/09031936.00048712Zhu, W., Liu, X., He, J., Chen, D., Hunag, Y., & Zhang, Y. K. (2011). Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: A case control study. BMC Cancer, 11(1). doi:10.1186/1471-2407-11-393Duncavage, E., Goodgame, B., Sezhiyan, A., Govindan, R., & Pfeifer, J. (2010). Use of MicroRNA Expression Levels to Predict Outcomes in Resected Stage I Non-small Cell Lung Cancer. Journal of Thoracic Oncology, 5(11), 1755-1763. doi:10.1097/jto.0b013e3181f3909dChen, Q., Si, Q., Xiao, S., Xie, Q., Lin, J., Wang, C., … Wang, L. (2012). Prognostic significance of serum miR-17-5p in lung cancer. Medical Oncology, 30(1). doi:10.1007/s12032-012-0353-2Zhang, H., Su, Y., Xu, F., Kong, J., Yu, H., & Qian, B. (2013). Circulating MicroRNAs in Relation to EGFR Status and Survival of Lung Adenocarcinoma in Female Non-Smokers. PLoS ONE, 8(11), e81408. doi:10.1371/journal.pone.0081408Garofalo, M., Romano, G., Di Leva, G., Nuovo, G., Jeon, Y.-J., Ngankeu, A., … Croce, C. M. (2011). EGFR and MET receptor tyrosine kinase–altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nature Medicine, 18(1), 74-82. doi:10.1038/nm.2577Romano, G., Acunzo, M., Garofalo, M., Di Leva, G., Cascione, L., Zanca, C., … Croce, C. M. (2012). MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non-small-cell lung cancer through BIM down-regulation. Proceedings of the National Academy of Sciences, 109(41), 16570-16575. doi:10.1073/pnas.1207917109Kreil, D. P., Russell, R. R., & Russell, S. (2006). [4] Microarray Oligonucleotide Probes. DNA Microarrays, Part A: Array Platforms and Wet-Bench Protocols, 73-98. doi:10.1016/s0076-6879(06)10004-xKRICHEVSKY, A. M. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9(10), 1274-1281. doi:10.1261/rna.5980303SHINGARA, J. (2005). An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA, 11(9), 1461-1470. doi:10.1261/rna.2610405Castoldi, M. (2006). A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA, 12(5), 913-920. doi:10.1261/rna.2332406Wang, H., Ach, R. A., & Curry, B. (2006). Direct and sensitive miRNA profiling from low-input total RNA. RNA, 13(1), 151-159. doi:10.1261/rna.234507Davison, T. S., Johnson, C. D., & Andruss, B. F. (2006). [2] Analyzing Micro‐RNA Expression Using Microarrays. DNA Microarrays, Part B: Databases and Statistics, 14-34. doi:10.1016/s0076-6879(06)11002-2Volinia, S., Calin, G. A., Liu, C.-G., Ambs, S., Cimmino, A., Petrocca, F., … Croce, C. M. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences, 103(7), 2257-2261. doi:10.1073/pnas.0510565103Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., … Harris, C. C. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9(3), 189-198. doi:10.1016/j.ccr.2006.01.025Patnaik, S. K., Kannisto, E., Knudsen, S., & Yendamuri, S. (2009). Evaluation of MicroRNA Expression Profiles That May Predict Recurrence of Localized Stage I Non-Small Cell Lung Cancer after Surgical Resection. Cancer Research, 70(1), 36-45. doi:10.1158/0008-5472.can-09-3153Patnaik, S. K., Yendamuri, S., Kannisto, E., Kucharczuk, J. C., Singhal, S., & Vachani, A. (2012). MicroRNA Expression Profiles of Whole Blood in Lung Adenocarcinoma. PLoS ONE, 7(9), e46045. doi:10.1371/journal.pone.0046045Roth, C., Stückrath, I., Pantel, K., Izbicki, J. R., Tachezy, M., & Schwarzenbach, H. (2012). Low Levels of Cell-Free Circulating miR-361-3p and miR-625* as Blood-Based Markers for Discriminating Malignant from Benign Lung Tumors. PLoS ONE, 7(6), e38248. doi:10.1371/journal.pone.0038248Metzker, M. L. (2009). Sequencing technologies — the next generation. Nature Reviews Genetics, 11(1), 31-46. doi:10.1038/nrg2626Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., … Chen, Z. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057), 376-380. doi:10.1038/nature03959Pritchard, C. C., Cheng, H. H., & Tewari, M. (2012). MicroRNA profiling: approaches and considerations. Nature Reviews Genetics, 13(5), 358-369. doi:10.1038/nrg3198Beane, J., Vick, J., Schembri, F., Anderlind, C., Gower, A., Campbell, J., … Spira, A. (2011). Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq. Cancer Prevention Research, 4(6), 803-817. doi:10.1158/1940-6207.capr-11-0212Kalari, K. R., Rossell, D., Necela, B. M., Asmann, Y. W., Nair, A., Baheti, S., … Thompson, E. A. (2012). Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations. Frontiers in Oncology, 2. doi:10.3389/fonc.2012.00012Ju, Y. S., Lee, W.-C., Shin, J.-Y., Lee, S., Bleazard, T., Won, J.-K., … Seo, J.-S. (2011). A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Research, 22(3), 436-445. doi:10.1101/gr.133645.111Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., … Zhang, C.-Y. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997-1006. doi:10.1038/cr.2008.282Hu, Z., Chen, X., Zhao, Y., Tian, T., Jin, G., Shu, Y., … Shen, H. (2010). Serum MicroRNA Signatures Identified in a Genome-Wide Serum MicroRNA Expression Profiling Predict Survival of Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 28(10), 1721-1726. doi:10.1200/jco.2009.24.9342Keller, A., Backes, C., Leidinger, P., Kefer, N., Boisguerin, V., Barbacioru, C., … Meese, E. (2011). Next-generation sequencing identifies novel microRNAs in peripheral blood of lung cancer patients. Molecular BioSystems, 7(12), 3187. doi:10.1039/c1mb05353aMeng, W., Ye, Z., Cui, R., Perry, J., Dedousi-Huebner, V., Huebner, A., … Lautenschlaeger, T. (2013). MicroRNA-31 Predicts the Presence of Lymph Node Metastases and Survival in Patients with Lung Adenocarcinoma. Clinical Cancer Research, 19(19), 5423-5433. doi:10.1158/1078-0432.ccr-13-0320Nuovo, G. J. (2010). In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets. Methods, 52(4), 307-315. doi:10.1016/j.ymeth.2010.08.009Jørgensen, S., Baker, A., Møller, S., & Nielsen, B. S. (2010). Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods, 52(4), 375-381. doi:10.1016/j.ymeth.2010.07.002Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., … Olson, E. N. (2008). The Endothelial-Specific MicroRNA miR-126 Governs Vascular Integrity and Angiogenesis. Developmental Cell, 15(2), 261-271. doi:10.1016/j.devcel.2008.07.002Voortman, J., Goto, A., Mendiboure, J., Sohn, J. J., Schetter, A. J., Saito, M., … Giaccone, G. (2010). MicroRNA Expression and Clinical Outcomes in Patients Treated with Adjuvant Chemotherapy after Complete Resection of Non-Small Cell Lung Carcinoma. Cancer Research, 70(21), 8288-8298. doi:10.1158/0008-5472.can-10-1348Nuovo, G. J. (2008). In situ detection of precursor and mature microRNAs in paraffin embedded, formalin fixed tissues and cell preparations. Methods, 44(1), 39-46. doi:10.1016/j.ymeth.2007.10.008Donnem, T., Lonvik, K., Eklo, K., Berg, T., Sorbye, S. W., Al-Shibli, K., … Busund, L.-T. (2011). Independent and tissue-specific prognostic impact of miR-126 in nonsmall cell lung cancer. Cancer, 117(14), 3193-3200. doi:10.1002/cncr.25907Donnem, T., Eklo, K., Berg, T., Sorbye, S. W., Lonvik, K., Al-Saad, S., … Busund, L.-T. (2011). Prognostic Impact of MiR-155 in Non-Small Cell Lung Cancer Evaluated by in Situ Hybridization. Journal of Translational Medicine, 9(1). doi:10.1186/1479-5876-9-6Donnem, T., Fenton, C. G., Lonvik, K., Berg, T., Eklo, K., Andersen, S., … Busund, L.-T. (2012). MicroRNA Signatures in Tumor Tissue Related to Angiogenesis in Non-Small Cell Lung Cancer. PLoS ONE, 7(1), e29671. doi:10.1371/journal.pone.0029671Eilertsen, M., Andersen, S., Al-Saad, S., Richardsen, E., Stenvold, H., Hald, S. M., … Bremnes, R. M. (2014). Positive prognostic impact of miR-210 in non-small cell lung cancer. Lung Cancer, 83(2), 272-278. doi:10.1016/j.lungcan.2013.11.005He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7), 522-531. doi:10.1038/nrg137

    Stereoscopic three-dimensional visualization applied to multimodal brain images: Clinical applications and a functional connectivity atlas

    Get PDF
    Effective visualization is central to the exploration and comprehension of brain imaging data. While MRI data are acquired in three-dimensional space, the methods for visualizing such data have rarely taken advantage of three-dimensional stereoscopic technologies. We present here results of stereoscopic visualization of clinical data, as well as an atlas of whole-brain functional connectivity. In comparison with traditional 3D rendering techniques, we demonstrate the utility of stereoscopic visualizations to provide an intuitive description of the exact location and the relative sizes of various brain landmarks, structures and lesions. In the case of resting state fMRI, stereoscopic 3D visualization facilitated comprehension of the anatomical position of complex large-scale functional connectivity patterns. Overall, stereoscopic visualization improves the intuitive visual comprehension of image contents, and brings increased dimensionality to visualization of traditional MRI data, as well as patterns of functional connectivity

    Controlled release delivery of penciclovir via a silicone (MED-4750) polymer: kinetics of drug delivery and efficacy in preventing primary feline herpesvirus infection in culture

    Get PDF
    Peripheral T-cell lymphoma (PTCL) represents a relatively rare group of heterogeneous non-Hodgkin lymphomas, with generally poor prognosis. Historically, there has been a lack of consensus regarding appropriate therapeutic measures for the disease, with conventional frontline chemotherapies being utilized in most cases. Following promising results obtained in 2009, the methotrexate analogue, pralatrexate, became the first drug to gain US FDA approval for the treatment of refractory PTCL. This antimetabolite was designed to have a higher affinity for reduced folate carrier (RFC) and folylpolyglutamate synthetase (FPGS). RFC is the principal transporter for cell entrance of folates and antifolates. Once inside the cell, pralatrexate is efficiently polyglutamated by FPGS. Pralatrexate has demonstrated varying degrees of efficacy in peripheral T-cell lymphoma, with response rates differing between the multiple subtypes of the disease. While phase III studies are still to be completed, early clinical trials indicate that pralatrexate is promising new therapeutic for PTCL
    corecore