11 research outputs found

    The glymphatic hypothesis: the theory and the evidence.

    Get PDF
    The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study

    Hypotonicity-induced changes in anion permeability of cultured rat brain endothelial cells

    Get PDF
    AbstractIodide efflux, an index of anion permeability, has been monitored in cultured rat brain endothelial cells. Following hypotonicity-induced swelling, large, rapid increases in permeability occur, the extent of these increases depending on the degree of hypotonicity. Such large responses are not observed with rat aortic endothelial cells. Results of anion substitution experiments suggest that iodide efflux is via a chloride channel rather than an exchanger. The efflux increase is blocked by NPPB (100 μM) but not by DIDS or DPC at 100 μM. It is dependent on intracellular ATP but unaffected by removal of external calcium. Increasing internal calcium using A23187 does not produce a change in efflux, but depletion of calcium reduces or eliminates the response to hypotonicity. The response is reduced by pimozide (2–50 μM) that inhibits the actions of calmodulin and by pBPB (10 μM) that affects phospholipase A2 activity. It is eliminated by 5-lipoxygenase inhibitors (L-656,224 and ETH615, 10 μM) but is unaffected by cyclo-oxygenase inhibitors (indomethacin and piroxicam, 1–100 μM). It is blocked by some modulators of P-glycoprotein activity, e.g., verapamil (100 μM), tamoxifen (50 μM), and progesterone (100 μM) but not by others, e,g., forskolin (40 μM), dideoxyforskolin (40 μM), quinidine (100 μM) and cyclosporin A (10 μM)

    Ion transporters in brain endothelial cells that contribute to formation of brain interstitial fluid

    Get PDF
    Ions and water transported across the endothelium lining the blood–brain barrier contribute to the fluid secreted into the brain and are important in maintaining appropriate volume and ionic composition of brain interstitial fluid. Changes in this secretion process may occur after stroke. The present study identifies at transcript and protein level ion transporters involved in the movement of key ions and examines how levels of certain of these alter following oxidative stress. Immunohistochemistry provides evidence for Cl(−)/HCO(3)(−) exchanger, AE2, and Na(+), HCO(3)(−) cotransporters, NBCe1 and NBCn1, on brain microvessels. mRNA analysis by RT-PCR reveals expression of these transporters in cultured rat brain microvascular endothelial cells (both primary and immortalized GPNT cells) and also Na(+)/H(+) exchangers, NHE1 (primary and immortalized) and NHE2 (primary cells only). Knock-down using siRNA in immortalized GPNT cells identifies AE2 as responsible for much of the Cl(−)/HCO(3)(−) exchange following extracellular chloride removal and NHE1 as the transporter that accounts for most of the Na(+)/H(+) exchange following intracellular acidification. Transcript levels of both AE2 and NHE1 are increased following hypoxia/reoxygenation. Further work is now required to determine the localization of the bicarbonate transporters to luminal or abluminal membranes of the endothelial cells as well as to identify and localize additional transport mechanisms that must exist for K(+) and Cl(−)

    Glutathione export from human erythrocytes and Plasmodium falciparum malaria parasites

    No full text
    Glutathione export from uninfected human erythrocytes was compared with that from cells infected with the malaria parasite Plasmodium falciparum using two separate methods that distinguish between oxidized (GSSG) and reduced (GSH) glutathione. One involved enzymatic recycling with or without thiol-masking; the other involved rapid derivatization followed by HPLC. Glutathione efflux from uninfected erythrocytes under physiological conditions occurred predominantly as GSH. On exposure of the cells to oxidative challenge, efflux of GSSG exceeded that of GSH. Efflux of both species was blocked by MK571, an inhibitor of mammalian multidrug-resistance proteins. Glutathione efflux from parasitized erythrocytes was substantially greater than that from uninfected erythrocytes. Under physiological conditions, the exported species was GSH, whereas under energy-depleted conditions, GSSG efflux occurred. Glutathione export from parasitized cells was inhibited partially by MK571 andmore so by furosemide, an inhibitor of the 'new permeability pathways' induced by the parasite in the host erythrocyte membrane. Efflux from isolated parasites occurred asGSH.On exposure to oxidative challenge, this GSH efflux decreased, but no GSSG export was detected. These results are consistent with the view that the parasite supplies its host erythrocyte with GSH, much of which is exported from the infected cell via parasite-induced pathways

    Decreased expression of multidrug efflux transporters in the brains of GSK-3β transgenic mice

    No full text
    Multidrug efflux transporters protect cells in the brain from potentially harmful substances but also from therapeutically useful drugs. Thus any condition that causes changes in their expression is of some importance with regard to drug access. In this study, changes in efflux transporter expression are investigated in mice containing a mutant constitutively active glycogen synthase kinase-3 (GSK-3β) transgene, driven by the Thy-1 promoter so limiting its localization predominantly to neurons and some glial cells. As expected, decreases in β-catenin were evident via Western blot analyses of cortical homogenates prepared from brains of these transgenic mice. As assessed by real time qRT-PCR, decreased transcript levels of the mdr1b isoform of P-glycoprotein, Mrp1 and Mrp4, (transporters associated with neurons and/or glial cells) were observed in the cortex but not the subventricular zone or hippocampus of the transgenic compared to wild type mouse brains. By contrast, no such decreases were evident with the mdr1a isoform of P-glycoprotein and Bcrp, transporters predominantly found in brain endothelium. Such transporter expression changes could not be accounted for by alterations in blood vessel density or neuronal to glial cell ratios as analyzed both from immunocytochemical staining and from RT-PCR. These observations support previous in vitro data showing that manipulations to GSK-3β activity that alter signaling via β-catenin can influence the expression of efflux transporters. Implications from this are that drug distribution into cells within the brain of these transgenic mice could be enhanced, hence warranting further investigation
    corecore