17 research outputs found
Ultrafast Modulation of Magnetization Dynamics in Ferromagnetic (Ga, Mn)As Thin Films
Magnetization precession induced by linearly polarized optical excitation in ferromagnetic (Ga,Mn)As was studied by time-resolved magneto-optical Kerr effect measurements. The superposition of thermal and non-thermal effects arising from the laser pulses complicates the analysis of magnetization precession in terms of magnetic anisotropy fields. To obtain insight into these processes, we investigated compressively-strained thin (Ga,Mn)As films using ultrafast optical excitation above the band gap as a function of pulse intensity. Data analyses with the gyromagnetic calculation based on Landau-Lifshitz-Gilbert equation combined with two different magneto-optical effects shows the non-equivalent effects of in-plane and out-of-plane magnetic anisotropy fields on both the amplitude and the frequency of magnetization precession, thus providing a handle for separating the effects of non-thermal and thermal processes in this context. Our results show that the effect of photo-generated carriers on magnetic anisotropy constitutes a particularly effective mechanism for controlling both the frequency and amplitude of magnetization precession, thus suggesting the possibility of non-thermal manipulation of spin dynamics through pulsed laser excitations
Orthogonal interfacial exchange coupling in GaMnAsP/GaMnAs bilayers
We carried out a systematic study of magnetic ordering and magnetic interlayer coupling in Ga1-xMnxAs1-yPy/Ga1-xMnxAs bilayers using superconducting quantum interference device magnetometry and ferromagnetic resonance. Such bilayers are interesting, because the easy axis of the constituent materials are orthogonal. Our results show that the bilayers are strongly exchange-coupled at the interface, that manifests itself in the form of horizontal exchange-bias-like shifts of the hysteresis loops of the Ga1-xMnxAs layer, as observed in field-cooled magnetic measurements
Ferromagnetic resonance and spin-wave resonances in GaMnAsP films
A series of Ga1-xMnxAs1-yPy films grown by MBE on GaAs (100) substrates was systematically studied by ferromagnetic resonance (FMR). Magnetic anisotropy parameters were obtained by analyzing the angular dependence of the FMR data. The results clearly show that the easy axis of the films shifts from the in-plane [100] direction to the out-of-plane [001], indicating the emergence of a strong tensile-strain-induced perpendicular anisotropy when the P content exceeds y ≈ 0.07. Multiple resonances were observed in Ga1-xMnxAs1-yPy films with thicknesses over 48 nm, demonstrating the existence of exchange-dominated non-propagating spin-wave modes governed by surface anisotropy
Room temperature weak ferromagnetism in Sn1−xMnxSe2 2D films grown by molecular beam epitaxy
We discuss growth and magnetic properties of high-quality two dimensional (2D) Sn1−xMnxSe2 films. Thin films of this 2D ternary alloy with a wide range of Mn concentrations were successfully grown by molecular beam epitaxy. Mn concentrations up to x ≈ 0.60 were achieved without destroying the crystal structure of the parent SnSe2 2D system. Most important, the specimens show clear weak ferromagnetic behavior above room temperature, which should be of interest for 2D spintronic applications