28 research outputs found
Distinguishing importation from diversification of quinolone-resistant Neisseria gonorrhoeae by molecular evolutionary analysis
<p>Abstract</p> <p>Background</p> <p>Distinguishing the recent introduction of quinolone resistant gonococci into a population from diversification of resistant strains already in the population is important for planning effective infection control strategies. We applied molecular evolutionary analyses to DNA sequences from 9 housekeeping genes and <it>gyrA</it>, <it>parC </it>and <it>porB </it>of 24 quinolone resistant <it>N. gonorrhoeae </it>(QRNG) and 24 quinolone sensitive isolates collected in Israel during 2000–2001.</p> <p>Results</p> <p>Phylogenetic and eBURST analyses and estimates of divergence time indicated QRNG were introduced on 3 separate occasions and underwent limited diversification by mutation, deletion and horizontal gene transfer. Reconstruction of <it>N. gonorrhoeae </it>demography showed a slowly declining effective strain population size from 1976 to 1993, rapid decline between 1994 and 1999, and an increase from 1999 to 2001. This is partially attributable to declining gonorrhea case rates from 1973 to 1994. Additional contributing factors are selective sweeps of antibiotic resistant gonococci and increased transmission from sex workers. The abrupt decline in the mid-1990s heralded an increased incidence of gonorrhea from 1997 to the present. The subsequent increase in effective strain population size since 1999 reflects the increased gonococcal census population and introduction of quinolone resistance strains.</p> <p>Conclusion</p> <p>Our study demonstrates the effective use of population genetic approaches to assess recent and historical population dynamics of <it>N. gonorrhoeae</it>.</p
Molecular Epidemiology of Neisseria meningitidis Serogroup B in Brazil
Background: Neisseria meningitidis serogroup B has been predominant in Brazil, but no broadly effective vaccine is available to prevent endemic meningococcal disease. To understand genetic diversity among serogroup B strains in Brazil, we selected a nationally representative sample of clinical disease isolates from 2004, and a temporally representative sample for the state of SĂŁo Paulo (1988-2006) for study (n = 372). Methods: We performed multi-locus sequence typing (MLST) and sequence analysis of five outer membrane protein (OMP) genes, including novel vaccine targets fHbp and nadA. Results: In 2004, strain B:4:P1.15,19 clonal complex ST-32/ET-5 (cc32) predominated throughout Brazil; regional variation in MLST sequence type (ST), fetA, and porB was significant but diversity was limited for nadA and fHbp. Between 1988 and 1996, the SĂŁo Paulo isolates shifted from clonal complex ST-41/44/Lineage 3 (cc41/44) to cc32. OMP variation was associated with but not predicted by cc or ST. Overall, fHbp variant 1/subfamily B was present in 80% of isolates and showed little diversity. The majority of nadA were similar to reference allele 1. Conclusions: A predominant serogroup B lineage has circulated in Brazil for over a decade with significant regional and temporal diversity in ST, fetA, and porB, but not in nadA and fHbp
por Variable-Region Typing by DNA Probe Hybridization Is Broadly Applicable to Epidemiologic Studies of Neisseria gonorrhoeae
The porin gene (porB) of Neisseria gonorrhoeae encodes the major outer membrane protein identified as PI or Por. To examine the utility of por variable-region (VR) typing, porB from 206 isolates was characterized by using oligonucleotide probes in a checkerboard hybridization assay that identifies the sequence types of five VRs of both PIA and PIB porB alleles. The strains represented temporally and geographically distinct isolates, isolates from a large cluster, epidemiologically linked partner isolates, and a collection of strains from disseminated gonococcal infections. By using rigorous epidemiologic criteria for transmission of infection between sex partners, por VR typing was more discriminatory than serovar typing in classifying isolates from both members of 43 epidemiologically linked pairs: 39 of 43 pairs were classified as coinciding by por VR typing compared to 43 of 43 by serovar determination (P = 0.058). porB sequence data confirmed the accuracy of the por VR method. Relationships between VR type and serovar typing monoclonal antibodies were observed for all six PIB and three of six PIA antibodies. por VR typing is a molecular tool that appears to have broad applicability. This method can be adapted to a wide range of technologies from simple hybridization to microarray and may allow for typing from noncultured clinical specimens
Effect of O Acetylation of Neisseria meningitidis Serogroup A Capsular Polysaccharide on Development of Functional Immune Responses
The importance of O-acetyl groups to the immunogenicity of Neisseria meningitidis serogroup A polysaccharide (PS) was examined in studies using human sera and mouse immunization. In 17 of 18 postimmunization human sera, inhibition enzyme-linked immunosorbent assay indicated that the majority of antibodies binding to serogroup A PS were specific for epitopes involving O-acetyl groups. Studies with mice also showed an essential role for O-acetyl groups, where serum bactericidal titers following immunization with de-O-acetylated (de-O-Ac) conjugate vaccine were at least 32-fold lower than those following immunization with O-Ac PS-conjugate vaccine and 4-fold lower than those following immunization with native capsular PS. Inhibition studies using native and de-O-Ac PS confirmed the specificity of murine antibodies to native PS. The dramatic reduction in immunogenicity associated with removal of O-acetyl groups indicates that O acetylation is essential to the immunogenic epitopes of serogroup A PS. Since levels of bactericidal antibodies are correlated with protection against disease, O-acetyl groups appear to be important in protection
Genetic diversity of three lgt loci for biosynthesis of lipooligosaccharide (LOS) in Neisseria species. Microbiology 148, 1833–1844. Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or fi
Lipooligosaccharide (LOS) is a major virulence factor of the pathogenic Neisseria. Nine lgt genes at three chromosomal loci (lgt-1, 2, 3) encoding the glycosyltransferases responsible for the biosynthesis of LOS oligosaccharide chains were examined in 26 Neisseria meningitidis, 51 Neisseria gonorrhoeae and 18 commensal Neisseria strains. DNA hybridization, PCR and nucleotide sequence data were compared to previously reported lgt genes. Analysis of the genetic organization of the lgt loci revealed that in N. meningitidis, the lgt-1 and lgt-3 loci were hypervariable genomic regions, whereas the lgt-2 locus was conserved. In N. gonorrhoeae, no variability in the composition or organization of the three lgt loci was observed. lgt genes were detected only in some commensal Neisseria species. The genetic organization of the lgt-1 locus was classified into eight types and the lgt-3 locus was classified into four types. Two types of arrangement at lgt-1 (II and IV) and one type of arrangement at lgt-3 (IV) were novel genetic organizations reported in this study. Based on the three lgt loci, 10 LOS genotypes of N. meningitidis were distinguished. Phylogenetic analysis revealed a gene cluster, lgtH, which separated from the homologous genes lgtB and lgtE. The lgtH and lgtE genes were mutually exclusive and were located at the same position in lgt-1. The data demonstrated that pathogenic and commensal Neisseria share a common lgt gene pool and horizontal gene transfer appears to contribute to the genetic diversity of the lgt loci in Neisseria