33 research outputs found

    The Rees product of posets

    Full text link
    We determine how the flag f-vector of any graded poset changes under the Rees product with the chain, and more generally, any t-ary tree. As a corollary, the M\"obius function of the Rees product of any graded poset with the chain, and more generally, the t-ary tree, is exactly the same as the Rees product of its dual with the chain, respectively, t-ary chain. We then study enumerative and homological properties of the Rees product of the cubical lattice with the chain. We give a bijective proof that the M\"obius function of this poset can be expressed as n times a signed derangement number. From this we derive a new bijective proof of Jonsson's result that the M\"obius function of the Rees product of the Boolean algebra with the chain is given by a derangement number. Using poset homology techniques we find an explicit basis for the reduced homology and determine a representation for the reduced homology of the order complex of the Rees product of the cubical lattice with the chain over the symmetric group.Comment: 21 pages, 1 figur

    The Rees product of the cubical lattice with the chain

    Get PDF
    We study enumerative and homological properties of the Rees product of the cubical lattice with the chain. We give several explicit formulas for the Möbius function. The last formula is expressed in terms of the permanent of a matrix and is given by a bijective proof

    Enumerative and asymptotic analysis of a moduli space

    Get PDF
    We focus on combinatorial aspects of the Hilbert series of the cohomology ring of the moduli space of stable pointed curves of genus zero. We show its graded Hilbert series satisfies an integral operator identity. This is used to give asymptotic behavior, and in some cases, exact values, of the coefficients themselves. We then study the total dimension, that is, the sum of the coefficients of the Hilbert series. Its asymptotic behavior involves the Lambert W function, which has applications to classical tree enumeration, signal processing and fluid mechanics.Comment: 14 page

    Classification of the factorial functions of Eulerian binomial and Sheffer posets

    Get PDF
    We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!n!, the factorial function of the infinite Boolean algebra, or 2n12^{n-1}, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n)=n!B(n) = n! has Sheffer factorial function D(n) identical to that of the infinite Boolean algebra, the infinite Boolean algebra with two new coatoms inserted, or the infinite cubical poset. Moreover, we are able to classify the Sheffer factorial functions of Eulerian Sheffer posets with binomial factorial function B(n)=2n1B(n) = 2^{n-1} as the doubling of an upside down tree with ranks 1 and 2 modified. When we impose the further condition that a given Eulerian binomial or Eulerian Sheffer poset is a lattice, this forces the poset to be the infinite Boolean algebra BXB_X or the infinite cubical lattice CX<C_X^{< \infty}. We also include several poset constructions that have the same factorial functions as the infinite cubical poset, demonstrating that classifying Eulerian Sheffer posets is a difficult problem.Comment: 23 pages. Minor revisions throughout. Most noticeable is title change. To appear in JCT

    The pre-WDVV ring of physics and its topology

    Full text link
    We show how a simplicial complex arising from the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory is the Whitehouse complex. Using discrete Morse theory, we give an elementary proof that the Whitehouse complex Δn\Delta_n is homotopy equivalent to a wedge of (n2)!(n-2)! spheres of dimension n4n-4. We also verify the Cohen-Macaulay property. Additionally, recurrences are given for the face enumeration of the complex and the Hilbert series of the associated pre-WDVV ring.Comment: 13 pages, 4 figures, 2 table

    On the non-existence of an R-labeling

    Full text link
    We present a family of Eulerian posets which does not have any R-labeling. The result uses a structure theorem for R-labelings of the butterfly poset.Comment: 6 pages, 1 figure. To appear in the journal Orde

    The Tchebyshev transforms of the first and second kind

    Full text link
    We give an in-depth study of the Tchebyshev transforms of the first and second kind of a poset, recently discovered by Hetyei. The Tchebyshev transform (of the first kind) preserves desirable combinatorial properties, including Eulerianess (due to Hetyei) and EL-shellability. It is also a linear transformation on flag vectors. When restricted to Eulerian posets, it corresponds to the Billera, Ehrenborg and Readdy omega map of oriented matroids. One consequence is that nonnegativity of the cd-index is maintained. The Tchebyshev transform of the second kind is a Hopf algebra endomorphism on the space of quasisymmetric functions QSym. It coincides with Stembridge's peak enumerator for Eulerian posets, but differs for general posets. The complete spectrum is determined, generalizing work of Billera, Hsiao and van Willigenburg. The type B quasisymmetric function of a poset is introduced. Like Ehrenborg's classical quasisymmetric function of a poset, this map is a comodule morphism with respect to the quasisymmetric functions QSym. Similarities among the omega map, Ehrenborg's r-signed Birkhoff transform, and the Tchebyshev transforms motivate a general study of chain maps. One such occurrence, the chain map of the second kind, is a Hopf algebra endomorphism on the quasisymmetric functions QSym and is an instance of Aguiar, Bergeron and Sottile's result on the terminal object in the category of combinatorial Hopf algebras. In contrast, the chain map of the first kind is both an algebra map and a comodule endomorphism on the type B quasisymmetric functions BQSym.Comment: 33 page

    Level Eulerian Posets

    Full text link
    The notion of level posets is introduced. This class of infinite posets has the property that between every two adjacent ranks the same bipartite graph occurs. When the adjacency matrix is indecomposable, we determine the length of the longest interval one needs to check to verify Eulerianness. Furthermore, we show that every level Eulerian poset associated to an indecomposable matrix has even order. A condition for verifying shellability is introduced and is automated using the algebra of walks. Applying the Skolem--Mahler--Lech theorem, the ab{\bf ab}-series of a level poset is shown to be a rational generating function in the non-commutative variables a{\bf a} and b{\bf b}. In the case the poset is also Eulerian, the analogous result holds for the cd{\bf cd}-series. Using coalgebraic techniques a method is developed to recognize the cd{\bf cd}-series matrix of a level Eulerian poset
    corecore