2 research outputs found
Yellow fever surveillance suggests zoonotic and anthroponotic emergent potential
Copyright de los autoresYellow fever is transmitted by mosquitoes among human and non-human primates. In the last decades, infections are occurring in areas that had been free from yellow fever for decades, probably as a consequence of the rapid spread of mosquito vectors, and of the virus evolutionary dynamic in which non-human primates are involved. This research is a pathogeographic assessment of where enzootic cycles, based on primate assemblages, could be amplifying the risk of yellow fever infections, in the context of spatial changes shown by the disease since the late 20th century. In South America, the most relevant spread of disease cases affects parts of the Amazon basin and a wide area of southern Brazil, where forest fragmentation could be activating enzootic cycles next to urban areas. In Africa, yellow fever transmission is apparently spreading from the west of the continent, and primates could be contributing to this in savannas around rainforests. Our results are useful for identifying new areas that should be prioritised for vaccination, and suggest the need of deep yellow fever surveillance in primates of South America and Africa.This study was supported by the Project CGL2016-76747-R,
of the Spanish Ministry of Economy, Industry and Competitiveness and the European
Regional Development Fund, and by the Project B4-2021-14 (08.37.00.20.27) of the
Research Plan of the University of Malaga. AA-S was supported by the FPU16/06710
grant of the Spanish Ministry of Education
Brighter-colored paper wasps (Polistes dominula) have larger poison glands
Introduction
Aposematism is a defense system against predators consisting of the toxicity warning using conspicuous coloration. If the toxin production and aposematic coloration is costly, only individuals in good physical condition could simultaneously produce abundant poison and striking coloration. In such cases, the aposematic coloration not only indicates that the animal is toxic, but also the toxicity level of individuals. The costs associated with the production of aposematic coloration would ensure that individuals honestly indicate their toxicity levels. In the present study, we examine the hypothesis that a positive correlation exists between the brightness of warning coloration and toxicity level using as a model the paper wasp (Polistes dominula).
Results
We collected wasps from 30 different nests and photographed them to measure the brightness of warning coloration in the abdomen. We also measured the volume of the poison gland, as well as the length, and the width of the abdomen. The results show a positive relationship between brightness and poison-gland size, which remained positive even after controlling for the body size and abdomen width.
Conclusion
The results suggest that the coloration pattern of these wasps is a true sign of toxicity level: wasps with brighter colors are more poisonous (they have larger poison glands)