24 research outputs found

    Adenosine diphosphate receptors on blood platelets - potential new targets for antiplatelet therapy

    No full text
    Platelets play a key role not only in physiological haemostasis, but also under pathological conditions such as thrombosis. Platelet activation may be initiated by a variety of agonists including thrombin, collagen, thromboxane or adenosine diphosphate (ADP). Although ADP is regarded as a weak agonist of blood platelets, it remains an important mediator of platelet activation evoked by other agonists, which induce massive ADP release from dense granules, where it occurs in molar concentrations. Thus, ADP action underlies a positive feedback that facilitates further platelet aggregation and leads to platelet plug formation. Additionally, ADP acts synergistically to other, even weak, agonists such as serotonin, adrenaline or chemokines. Blood platelets express two types of P2Y ADP receptors: P2Y_1 and P2Y_12. ADP-dependent platelet aggregation is initiated by the P2Y1 receptor, whereas P2Y_12 receptor augments the activating signal and promotes platelet release reaction. Stimulation of P2Y_12 is also essential for ADP-mediated complete activation of GPIIb-IIIa and GPIa-IIa, and further stabilization of platelet aggregates. The crucial role in blood platelet biology makes P2_Y12 an ideal candidate for pharmacological approaches for anti-platelet therapy

    Cellular level of 8-oxo-2'-deoxyguanosine in DNA does not correlate with urinary excretion of the modified base/nucleoside.

    No full text
    We assessed a relationship between the level of 8-oxodG in leukocyte DNA measured with the high performance liquid chromatography with electrochemical detection (HPLC/EC) technique and urinary excretion of the modified nucleoside/base analysed with a recently developed methodology involving HPLC prepurification followed by gas chromatography with isotope dilution mass spectrometric detection. No correlation was found between these markers of oxidative DNA damage commonly used in epidemiological studies. Several possible explanations of this finding are discussed

    Oxidative damage to DNA and antioxidant status in aging and age-related diseases

    No full text
    Aging is a complex process involving morphologic and biochemical changes in single cells and in the whole organism. One of the most popular explanations of how aging occurs at the molecular level is the oxidative stress hypothesis. Oxidative stress leads in many cases to an age-dependent increase in the cellular level of oxidatively modified macromolecules including DNA, and it is this increase which has been linked to various pathological conditions, such as aging, carcinogenesis, neurodegenerative and cardiovascular diseases. It is, however, possible that a number of short-comings associated with gaps in our knowledge may be responsible for the failure to produce definite results when applied to understanding the role of DNA damage in aging and age-related diseases
    corecore