26 research outputs found

    Thermal isomerization of phenylazoindoles:Inversion or rotation? That is the question

    Get PDF
    Azoheteroarenes represent an attractive group of photochromes exhibiting a large structural variability and tunability of photoswitching characteristics. The thermal back-isomerization can proceed via inversion or rotation mechanisms, depending on the functionalization and environment. However, the distinction between the two remains a challenge for both experiment and theory. Here, four experimentally fully characterized phenylazoindoles are studied to establish the mechanism of back-reaction in solvent using density functional theory (DFT), spin-flip time-dependent (TD-)DFT, mixed-reference TD-DFT, and restricted ensemble Kohn–Sham approaches as well as CASPT2 and CCSD(T). While the inversion is consistently described by all methods, the rotation mechanism requires multireference approaches including dynamic correlation. The balanced description of both pathways becomes even more important in solvent which apparently affects the mechanism. For the present set, the range-separated functionals combined with continuum models appear to be the most consistent with experiment in terms of the substitutional and solvent effects on thermal halftimes.</p

    Thermal isomerization of phenylazoindoles:Inversion or rotation? That is the question

    Get PDF
    Azoheteroarenes represent an attractive group of photochromes exhibiting a large structural variability and tunability of photoswitching characteristics. The thermal back-isomerization can proceed via inversion or rotation mechanisms, depending on the functionalization and environment. However, the distinction between the two remains a challenge for both experiment and theory. Here, four experimentally fully characterized phenylazoindoles are studied to establish the mechanism of back-reaction in solvent using density functional theory (DFT), spin-flip time-dependent (TD-)DFT, mixed-reference TD-DFT, and restricted ensemble Kohn–Sham approaches as well as CASPT2 and CCSD(T). While the inversion is consistently described by all methods, the rotation mechanism requires multireference approaches including dynamic correlation. The balanced description of both pathways becomes even more important in solvent which apparently affects the mechanism. For the present set, the range-separated functionals combined with continuum models appear to be the most consistent with experiment in terms of the substitutional and solvent effects on thermal halftimes.</p

    Thermal isomerization of phenylazoindoles:Inversion or rotation? That is the question

    Get PDF
    Azoheteroarenes represent an attractive group of photochromes exhibiting a large structural variability and tunability of photoswitching characteristics. The thermal back-isomerization can proceed via inversion or rotation mechanisms, depending on the functionalization and environment. However, the distinction between the two remains a challenge for both experiment and theory. Here, four experimentally fully characterized phenylazoindoles are studied to establish the mechanism of back-reaction in solvent using density functional theory (DFT), spin-flip time-dependent (TD-)DFT, mixed-reference TD-DFT, and restricted ensemble Kohn–Sham approaches as well as CASPT2 and CCSD(T). While the inversion is consistently described by all methods, the rotation mechanism requires multireference approaches including dynamic correlation. The balanced description of both pathways becomes even more important in solvent which apparently affects the mechanism. For the present set, the range-separated functionals combined with continuum models appear to be the most consistent with experiment in terms of the substitutional and solvent effects on thermal halftimes.</p

    Thermal isomerization of phenylazoindoles:Inversion or rotation? That is the question

    Get PDF
    Azoheteroarenes represent an attractive group of photochromes exhibiting a large structural variability and tunability of photoswitching characteristics. The thermal back-isomerization can proceed via inversion or rotation mechanisms, depending on the functionalization and environment. However, the distinction between the two remains a challenge for both experiment and theory. Here, four experimentally fully characterized phenylazoindoles are studied to establish the mechanism of back-reaction in solvent using density functional theory (DFT), spin-flip time-dependent (TD-)DFT, mixed-reference TD-DFT, and restricted ensemble Kohn–Sham approaches as well as CASPT2 and CCSD(T). While the inversion is consistently described by all methods, the rotation mechanism requires multireference approaches including dynamic correlation. The balanced description of both pathways becomes even more important in solvent which apparently affects the mechanism. For the present set, the range-separated functionals combined with continuum models appear to be the most consistent with experiment in terms of the substitutional and solvent effects on thermal halftimes.</p

    Thermal isomerization of phenylazoindoles:Inversion or rotation? That is the question

    Get PDF
    Azoheteroarenes represent an attractive group of photochromes exhibiting a large structural variability and tunability of photoswitching characteristics. The thermal back-isomerization can proceed via inversion or rotation mechanisms, depending on the functionalization and environment. However, the distinction between the two remains a challenge for both experiment and theory. Here, four experimentally fully characterized phenylazoindoles are studied to establish the mechanism of back-reaction in solvent using density functional theory (DFT), spin-flip time-dependent (TD-)DFT, mixed-reference TD-DFT, and restricted ensemble Kohn–Sham approaches as well as CASPT2 and CCSD(T). While the inversion is consistently described by all methods, the rotation mechanism requires multireference approaches including dynamic correlation. The balanced description of both pathways becomes even more important in solvent which apparently affects the mechanism. For the present set, the range-separated functionals combined with continuum models appear to be the most consistent with experiment in terms of the substitutional and solvent effects on thermal halftimes.</p

    Thermal isomerization of phenylazoindoles:Inversion or rotation? That is the question

    Get PDF
    Azoheteroarenes represent an attractive group of photochromes exhibiting a large structural variability and tunability of photoswitching characteristics. The thermal back-isomerization can proceed via inversion or rotation mechanisms, depending on the functionalization and environment. However, the distinction between the two remains a challenge for both experiment and theory. Here, four experimentally fully characterized phenylazoindoles are studied to establish the mechanism of back-reaction in solvent using density functional theory (DFT), spin-flip time-dependent (TD-)DFT, mixed-reference TD-DFT, and restricted ensemble Kohn–Sham approaches as well as CASPT2 and CCSD(T). While the inversion is consistently described by all methods, the rotation mechanism requires multireference approaches including dynamic correlation. The balanced description of both pathways becomes even more important in solvent which apparently affects the mechanism. For the present set, the range-separated functionals combined with continuum models appear to be the most consistent with experiment in terms of the substitutional and solvent effects on thermal halftimes.</p

    Front Cover: Enhancing the Potential of Fused Heterocycle‐Based Triarylhydrazone Photoswitches (Chem. Eur. J. 8/2024)

    Get PDF
    A new class of triarylhydrazone photoswitches has been designed, following an idea to control the strength of a hydrogen bond connecting the photo-active hydrazone part with a heteroaryl substituent. Introducing a benzothiazole moiety results in high thermal stability, absorption above 365 nm, and satisfactory photoconversion rates. High-quality calculations and advanced ultrafast spectroscopy allowed the nature of the electronic transitions to be resolved and the photoisomerization mechanism to be elucidated

    Enhancing the Potential of Fused Heterocycle-Based Triarylhydrazone Photoswitches

    Get PDF
    Triarylhydrazones represent an attractive class of photochromic compounds offering many interesting features including high molar absorptivity, good addressability, and extraordinary thermal stability. In addition, unlike most other hydrazone-based photoswitches, they effectively absorb light above 365 nm. However, previously prepared triaryhydrazones suffer from low quantum yields of the Z→E photoisomerization. Here, we have designed a new subclass of naphthoyl-benzothiazole hydrazones that balance the most beneficial features of previously reported naphthoyl-quinoline and benzoyl-pyridine triarylhydrazones. These preserve the attractive absorption characteristics, exhibit higher thermal stability of the metastable form than the former and enhance the rate of the Z→E photoisomerization compared to the later, as a result of the weakening of the intramolecular hydrogen bonding between the hydrazone hydrogen and the benzothiazole moiety. Introducing the benzothiazole motif extends the tunability of the photochromic behaviour of hydrazone-based switches.</p

    7-Dialkylaminocoumarin Oximates: Small Molecule Fluorescent “Turn-On” Chemosensors for Low-Level Water Content in Aprotic Organic Solvents

    No full text
    The water sensing properties of two efficient two-component fluorescent “turn-on” chemo-sensors based on the 7-dialkylaminocoumarin oxime acid-base equilibrium were investigated. Interestingly, although simple frontier orbital analysis predicts an intramolecular photoinduced electron transfer quenching pathway in conjugated oximates, TD-DFT (Time-dependent density functional theory) quantum chemical calculations support non-radiative dark S1 excited state deactivation as a fluorescence quenching mechanism. Due to the acid-base sensing mechanism and sensitive “turn-on” fluorescent response, both studied coumarin aldoxime chemosensors exhibit rapid response to low-level water content in polar aprotic solvents, with detection limits comparable to chemodosimeters or chemosensors based on interpolymer π-stacking aggregation
    corecore