3 research outputs found

    3D Oscillator and Coulomb Systems reduced from Kahler spaces

    Full text link
    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is non-Kahler one. Finally, we extend these results to the family of Kahler spaces with conic singularities.Comment: To the memory of Professor Valery Ter-Antonyan, 11 page

    The charge-dyon bound system in the spherical quantum well

    Full text link
    The spherical wave functions of charge-dyon bounded system in a rectangular spherical quantum dot of infinitely and finite height are calculated. The transcendent equations, defining the energy spectra of the systems are obtained. The dependence of the energy levels from the wall sizes is found.Comment: 8 pages, 5 figure
    corecore