5 research outputs found

    Reproducibility of Dietary Intake Measurement From Diet Diaries, Photographic Food Records, and a Novel Sensor Method

    Get PDF
    Objective: No data currently exist on the reproducibility of photographic food records compared to diet diaries, two commonly used methods to measure dietary intake. Our aim was to examine the reproducibility of diet diaries, photographic food records, and a novel electronic sensor, consisting of counts of chews and swallows using wearable sensors and video analysis, for estimating energy intake. Method: This was a retrospective analysis of data from a previous study, in which 30 participants (15 female), aged 29 ± 12 y and having a BMI of 27.9 ± 5.5, consumed three identical meals on different days. Four different methods were used to estimate total mass and energy intake on each day: (1) weighed food record; (2) photographic food record; (3) diet diary; and (4) novel mathematical model based on counts of chews and swallows (CCS models) obtained via the use of electronic sensors and video monitoring system. The study staff conducted weighed food records for all meals, took pre- and post-meal photographs, and ensured that diet diaries were completed by participants at the end of each meal. All methods were compared against the weighed food record, which was used as the reference method. Results: Reproducibility was significantly different between the diet diary and photographic food record for total energy intake (p = 0.004). The photographic record had greater reproducibility vs. the diet diary for all parameters measured. For total energy intake, the novel sensor method exhibited good reproducibility (repeatability coefficient (RC) of 59.9 (45.9, 70.4), which was better than that for the diet diary [RC = 79.6 (55.5, 103.3)] but not as repeatable as the photographic method [RC = 43.4 (32.1, 53.9)]. Conclusion: Photographic food records offer superior precision to the diet diary and, therefore, would be valuable for longitudinal studies with repeated measures of dietary intake. A novel electronic sensor also shows promise for the collection of longitudinal dietary intake data.Fil: Fontana, Juan Manuel. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Pan, Zhaoxing. University of Colorado; Estados UnidosFil: Sazonov, Edward S.. University of Alabama; Estados UnidosFil: McCrory, Megan A.. Boston University; Estados UnidosFil: Thomas, J. Graham. University Brown; Estados UnidosFil: McGrane, Kelli S.. University of Colorado; Estados UnidosFil: Marden, Tyson. University of Colorado; Estados UnidosFil: Higgins, Janine A.. University of Colorado; Estados Unido

    Body mass index and variability in meal duration and association with rate of eating

    Get PDF
    BackgroundA fast rate of eating is associated with a higher risk for obesity but existing studies are limited by reliance on self-report and the consistency of eating rate has not been examined across all meals in a day. The goal of the current analysis was to examine associations between meal duration, rate of eating, and body mass index (BMI) and to assess the variance of meal duration and eating rate across different meals during the day.MethodsUsing an observational cross-sectional study design, non-smoking participants aged 18–45 years (N = 29) consumed all meals (breakfast, lunch, and dinner) on a single day in a pseudo free-living environment. Participants were allowed to choose any food and beverages from a University food court and consume their desired amount with no time restrictions. Weighed food records and a log of meal start and end times, to calculate duration, were obtained by a trained research assistant. Spearman's correlations and multiple linear regressions examined associations between BMI and meal duration and rate of eating.ResultsParticipants were 65% male and 48% white. A shorter meal duration was associated with a higher BMI at breakfast but not lunch or dinner, after adjusting for age and sex (p = 0.03). Faster rate of eating was associated with higher BMI across all meals (p = 0.04) and higher energy intake for all meals (p < 0.001). Intra-individual rates of eating were not significantly different across breakfast, lunch, and dinner (p = 0.96).ConclusionShorter beakfast and a faster rate of eating across all meals were associated with higher BMI in a pseudo free-living environment. An individual's rate of eating is constant over all meals in a day. These data support weight reduction interventions focusing on the rate of eating at all meals throughout the day and provide evidence for specifically directing attention to breakfast eating behaviors

    The spectrum of eating environments encountered in free living adults documented using a passive capture food intake wearable device

    Get PDF
    IntroductionThe aim of this feasibility and proof-of-concept study was to examine the use of a novel wearable device for automatic food intake detection to capture the full range of free-living eating environments of adults with overweight and obesity. In this paper, we document eating environments of individuals that have not been thoroughly described previously in nutrition software as current practices rely on participant self-report and methods with limited eating environment options.MethodsData from 25 participants and 116 total days (7 men, 18 women, Mage = 44 ± 12 years, BMI 34.3 ± 5.2 kg/mm2), who wore the passive capture device for at least 7 consecutive days (≥12h waking hours/d) were analyzed. Data were analyzed at the participant level and stratified amongst meal type into breakfast, lunch, dinner, and snack categories. Out of 116 days, 68.1% included breakfast, 71.5% included lunch, 82.8% included dinner, and 86.2% included at least one snack.ResultsThe most prevalent eating environment among all eating occasions was at home and with one or more screens in use (breakfast: 48.1%, lunch: 42.2%, dinner: 50%, and snacks: 55%), eating alone (breakfast: 75.9%, lunch: 89.2%, dinner: 74.3%, snacks: 74.3%), in the dining room (breakfast: 36.7%, lunch: 30.1%, dinner: 45.8%) or living room (snacks: 28.0%), and in multiple locations (breakfast: 44.3%, lunch: 28.8%, dinner: 44.8%, snacks: 41.3%).DiscussionResults suggest a passive capture device can provide accurate detection of food intake in multiple eating environments. To our knowledge, this is the first study to classify eating occasions in multiple eating environments and may be a useful tool for future behavioral research studies to accurately codify eating environments
    corecore