3 research outputs found

    On the multiplicity of the hyperelliptic integrals

    Full text link
    Let I(t)=∮δ(t)ωI(t)= \oint_{\delta(t)} \omega be an Abelian integral, where H=y2−xn+1+P(x)H=y^2-x^{n+1}+P(x) is a hyperelliptic polynomial of Morse type, δ(t)\delta(t) a horizontal family of cycles in the curves {H=t}\{H=t\}, and ω\omega a polynomial 1-form in the variables xx and yy. We provide an upper bound on the multiplicity of I(t)I(t), away from the critical values of HH. Namely: $ord\ I(t) \leq n-1+\frac{n(n-1)}{2}if if \deg \omega <\deg H=n+1.Thereasoninggoesasfollows:weconsidertheanalyticcurveparameterizedbytheintegralsalong. The reasoning goes as follows: we consider the analytic curve parameterized by the integrals along \delta(t)ofthe of the n‘‘Petrov′′formsof ``Petrov'' forms of H(polynomial1−formsthatfreelygeneratethemoduleofrelativecohomologyof (polynomial 1-forms that freely generate the module of relative cohomology of H),andinterpretthemultiplicityof), and interpret the multiplicity of I(t)astheorderofcontactof as the order of contact of \gamma(t)andalinearhyperplaneof and a linear hyperplane of \textbf C^ n.UsingthePicard−Fuchssystemsatisfiedby. Using the Picard-Fuchs system satisfied by \gamma(t),weestablishanalgebraicidentityinvolvingthewronskiandeterminantoftheintegralsoftheoriginalform, we establish an algebraic identity involving the wronskian determinant of the integrals of the original form \omegaalongabasisofthehomologyofthegenericfiberof along a basis of the homology of the generic fiber of H.Thelatterwronskianisanalyzedthroughthisidentity,whichyieldstheestimateonthemultiplicityof. The latter wronskian is analyzed through this identity, which yields the estimate on the multiplicity of I(t).Still,insomecases,relatedtothegeometryatinfinityofthecurves. Still, in some cases, related to the geometry at infinity of the curves \{H=t\} \subseteq \textbf C^2,thewronskianoccurstobezeroidentically.Inthisalternativeweshowhowtoadapttheargumenttoasystemofsmallerrank,andgetanontrivialwronskian.Foraform, the wronskian occurs to be zero identically. In this alternative we show how to adapt the argument to a system of smaller rank, and get a nontrivial wronskian. For a form \omegaofarbitrarydegree,weareledtoestimatingtheorderofcontactbetween of arbitrary degree, we are led to estimating the order of contact between \gamma(t)andasuitablealgebraichypersurfacein and a suitable algebraic hypersurface in \textbf C^{n+1}.Weobservethat. We observe that ord I(t)growslikeanaffinefunctionwithrespectto grows like an affine function with respect to \deg \omega$.Comment: 18 page

    On the Wallman-Frink compactification of 0-dimensional spaces and shape

    No full text
    Here SF denotes the category whose objects are the pairs (X,P)where P is a metrizable ANR-space and X is a closed subset of P, and the morphisms between two objects (X,P) and (Y,Q) are the homotopy classes of mutations f:U(X,P)→V(Y,Q) (where U(X,P) and V(Y,Q) are the complete open neighborhood systems of X in P and Y in Q respectively). So two objects of SF are isomorphic if and only if they have the same shape in the sense of Fox (or Marde sic). The author constructs a covariant functor T from SF to the category C0 of all compact 0-dimensional spaces and continuous maps. This functor allows him to obtain new shape invariants in the class of metrizable spaces. Using this functor T he also constructs new contravariant functors to the the category of metrizable spaces and continuous maps and to the category of groups and homomorphisms. In order to construct T he uses the space of quasicomponents QX of a metrizable space X . Actually he uses the 0-dimensional compactification β0(QX) of QX. The space β0(QX) can be viewed as the 0-dimensional analogue of the Stone-Cech compactification. As a theorem he proves that two 0-dimensional metrizable spaces are of the same shape if and only if they are homeomorphic. This is a generalization in the metric case of a similar result for paracompacta due to G. Kozlowski and the reviewer [Fund. Math. 83 (1974), no. 2, 151-154] because there are metrizable spaces X such that ind(X)=0 but the covering dimension dim(X)>0

    Ultrasound Enhanced Thrombolysis for Ischemic Stroke

    No full text
    corecore