5 research outputs found

    Influence of the Laser Deposited 316L Single Layers on Corrosion in Physiological Media

    Get PDF
    [EN] A multilayer laser-deposited lining of AISI 316L stainless steel makes a regular structural steel surface corrosion resistant in physiological media. Despite the application of single-layer stainless-steel linings being economically beneficial and allowing thinner surface modifications, dilution effects that modify the pitting resistance of the coating must be accounted for. In order to study the feasibility of employing single-layer coatings instead of multilayer coatings for corrosion protection in physiological media, a polarization testing back-to-back comparison was performed between laser-deposited AISI 316L monolayers on 42CrMo4 quenched and tempered steel and cold-rolled AISI 316L sheet in Dulbecco’s Phosphate Buffer Solution at 36 °C. A higher dispersion in pitting resistance, ranging from 800 mV to 1200 mV, was found on the coated samples, whereas the cold-rolled material was more stable in the 1200 mV range. The resulting differences in corrosion rates and pitting potentials open the discussion on whether the chemical composition deviations on AISI 316L dilution layers are acceptable in terms of surface functionality in medical device

    Effect of Internal Defects on the Fatigue Behavior of Additive Manufactured Metal Components: A Comparison between Ti6Al4V and Inconel 718

    Get PDF
    In order to obtain a widespread application of Additive Manufactured (AM) technology in the aircraft industry for fatigue critical parts, a detailed characterization of the Fatigue and Damage Tolerance (F&DT) behavior of structural components is required. Metal AM techniques in particular are prone to internal defects inherently present due to the nature of the process, which have a detrimental effect on fatigue properties. In the present work, Ti6Al4V and Inconel 718 coupons with artificially induced defects of different dimensions were produced by the Laser Powder Bed Fusion (LPBF) technique. Fatigue tests were performed, and a different defect sensitiveness was observed between the two materials with Inconel being more defect tolerant compared to Titanium. The environmental role at the crack tip of internal defects was discussed, and based on a purely fracture mechanics approach, a simplified stress–life–defect size model was finally devised. The experimental test results together with the information obtained from the fracture surface analysis of tested samples are used to validate the model predictions. The proposed approach could be adopted to define a critical defect size map to be used for tailored Non-Destructive Testing (NDT) evaluation

    Influence of the laser deposited 316L single layers on corrosion in physiological media

    Get PDF
    A multilayer laser-deposited lining of AISI 316L stainless steel makes a regular structural steel surface corrosion resistant in physiological media. Despite the application of single-layer stainless-steel linings being economically beneficial and allowing thinner surface modifications, dilution effects that modify the pitting resistance of the coating must be accounted for. In order to study the feasibility of employing single-layer coatings instead of multilayer coatings for corrosion protection in physiological media, a polarization testing back-to-back comparison was performed between laser-deposited AISI 316L monolayers on 42CrMo4 quenched and tempered steel and cold-rolled AISI 316L sheet in Dulbecco's Phosphate Buffer Solution at 36 degrees C. A higher dispersion in pitting resistance, ranging from 800 mV to 1200 mV, was found on the coated samples, whereas the cold-rolled material was more stable in the 1200 mV range. The resulting differences in corrosion rates and pitting potentials open the discussion on whether the chemical composition deviations on AISI 316L dilution layers are acceptable in terms of surface functionality in medical devices

    Influence of the laser deposited 316L single layers on corrosion in physiological media

    Full text link
    A multilayer laser-deposited lining of AISI 316L stainless steel makes a regular structural steel surface corrosion resistant in physiological media. Despite the application of single-layer stainless-steel linings being economically beneficial and allowing thinner surface modifications, dilution effects that modify the pitting resistance of the coating must be accounted for. In order to study the feasibility of employing single-layer coatings instead of multilayer coatings for corrosion protection in physiological media, a polarization testing back-to-back comparison was performed between laser-deposited AISI 316L monolayers on 42CrMo4 quenched and tempered steel and cold-rolled AISI 316L sheet in Dulbecco's Phosphate Buffer Solution at 36 degrees C. A higher dispersion in pitting resistance, ranging from 800 mV to 1200 mV, was found on the coated samples, whereas the cold-rolled material was more stable in the 1200 mV range. The resulting differences in corrosion rates and pitting potentials open the discussion on whether the chemical composition deviations on AISI 316L dilution layers are acceptable in terms of surface functionality in medical devices
    corecore