1,291 research outputs found
Charge sensing in carbon nanotube quantum dots on microsecond timescales
We report fast, simultaneous charge sensing and transport measurements of
gate-defined carbon nanotube quantum dots. Aluminum radio frequency single
electron transistors (rf-SETs) capacitively coupled to the nanotube dot provide
single-electron charge sensing on microsecond timescales. Simultaneously, rf
reflectometry allows fast measurement of transport through the nanotube dot.
Charge stability diagrams for the nanotube dot in the Coulomb blockade regime
show extended Coulomb diamonds into the high-bias regime, as well as even-odd
filling effects, revealed in charge sensing data.Comment: 4 pages, 4 figure
Polymers in Curved Boxes
We apply results derived in other contexts for the spectrum of the Laplace
operator in curved geometries to the study of an ideal polymer chain confined
to a spherical annulus in arbitrary space dimension D and conclude that the
free energy compared to its value for an uncurved box of the same thickness and
volume, is lower when , stays the same when , and is higher when
\mbox{}. Thus confining an ideal polymer chain to a cylindrical shell,
lowers the effective bending elasticity of the walls, and might induce
spontaneous symmetry breaking, i.e. bending. (Actually, the above mentioned
results show that {\em {any}} shell in induces this effect, except for
a spherical shell). We compute the contribution of this effect to the bending
rigidities in the Helfrich free energy expression.Comment: 20 pages RevTeX, epsf; 4 figures; submitted to Macromoledule
B Cell Antigen Receptor Signaling and Internalization Are Mutually Exclusive Events
Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands
Two-band second moment model and an interatomic potential for caesium
A semi-empirical formalism is presented for deriving interatomic potentials
for materials such as caesium or cerium which exhibit volume collapse phase
transitions. It is based on the Finnis-Sinclair second moment tight binding
approach, but incorporates two independent bands on each atom. The potential is
cast in a form suitable for large-scale molecular dynamics, the computational
cost being the evaluation of short ranged pair potentials. Parameters for a
model potential for caesium are derived and tested
Recommended from our members
The ion transporter Na<sup>+</sup>-K<sup>+</sup>-ATPase enables pathological B cell survival in the kidney microenvironment of lupus nephritis
The kidney is a comparatively hostile microenvironment characterized by highsodium concentrations; however, lymphocytes infiltrate and survive therein in autoimmune diseases such as lupus. The effects of sodium-lymphocyte interactions on tissue injury in autoimmune diseases and the mechanisms used by infiltrating lymphocytes to survive the highsodium environment of the kidney are not known. Here, we show that kidneyinfiltrating B cells in lupus adapt to elevated sodium concentrations and that expression of sodium potassium adenosine triphosphatase (Na+-K+-ATPase) correlates with the ability of infiltrating cells to survive. Pharmacological inhibition of Na+-K+-ATPase and genetic knockout of Na+-K+-ATPase γ subunit resulted in reduced B cell infiltration into kidneys and amelioration of proteinuria. B cells in human lupus nephritis biopsies also had high expression of Na+-K+-ATPase. Our study reveals that kidney-infiltrating B cells in lupus initiate a tissue adaption program in response to sodium stress and identifies Na+-K+-ATPase as an organ-specific therapeutic target
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution
of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the
associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local
management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef
fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions
and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the
1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites
and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure,
diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale
integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales,
with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas
still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance.
This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should
be integrated into existing management frameworks and combined with policies to improve system-wide resilience to
climate variation and change
Primary Transgenic Bovine Cells and Their Rejuvenated Cloned Equivalents Show Transgene-Specific Epigenetic Differences
Cell-mediated transgenesis, based on somatic cell nuclear transfer (SCNT), provides the opportunity to shape the genetic make-up of cattle. Bovine primary fetal fibroblasts, commonly used cells for SCNT, have a limited lifespan, and complex genetic modifications that require sequential transfections can be challenging time and cost-wise. To overcome these limitations, SCNT is frequently used to rejuvenate the cell lines and restore exhausted growth potential. We have designed a construct to be used in a 2-step cassette exchange experiment. Our transgene contains a puromycin resistance marker gene and an enhanced green fluorescence protein (EGFP) expression cassette, both driven by a strong mammalian promoter, and flanked by loxP sites and sequences from the bovine β-casein locus. Several transgenic cell lines were generated by random insertion into primary bovine cell lines. Two of these original cell lines were rederived by SCNT and new primary cells, with the same genetic makeup as the original donors, were established. While the original cell lines were puromycin-resistant and had a characteristic EGFP expression profile, all rejuvenated cell lines were sensitive to puromycin, and displayed varied EGFP expression, indicative of various degrees of silencing. When the methylation states of individual CpG sites within the transgene were analyzed, a striking increase in transgene-specific methylation was observed in all rederived cell lines. The results indicate that original transgenic donor cells and their rejuvenated derivatives may not be equivalent and differ in the functionality of their transgene sequences
- …