279 research outputs found

    Device modeling of long-channel nanotube electro-optical emitter

    Full text link
    We present a simple analytic model of nanotube electro-optical emitters, along with improved experimental measurements using PMMA-passivated devices with reduced hysteresis. Both the ambipolar electrical characteristics and the motion of the infrared-emission spot are well described. The model indicates that the electric field is strongly enhanced at the emission spot, and that device performance can be greatly improved by the use of thinner gate oxides

    Cooling of photoexcited carriers in graphene by internal and substrate phonons

    Get PDF
    We investigate the energy relaxation of hot carriers produced by photoexcitation of graphene through coupling to both intrinsic and remote (substrate) surface polar phonons using the Boltzmann equation approach. We find that the energy relaxation of hot photocarriers in graphene on commonly used polar substrates, under most conditions, is dominated by remote surface polar phonons. We also calculate key characteristics of the energy relaxation process, such as the transient cooling time and steady state carrier temperatures and photocarriers densities, which determine the thermoelectric and photovoltaic photoresponse, respectively. Substrate engineering can be a promising route to efficient optoelectronic devices driven by hot carrier dynamics.Comment: related papers at http://tonylow.info

    Graphene quantum dots probed by scanning tunneling spectroscopy and transport spectroscopy after local anodic oxidation

    Full text link
    Graphene quantum dots are considered as promising alternatives to quantum dots in III-V semiconductors, e.g., for the use as spin qubits due to their consistency made of light atoms including spin-free nuclei which both imply relatively long spin decoherene times. However, this potential has not been realized in experiments so far, most likely, due to a missing control of the edge configurations of the quantum dots. Thus, a more fundamental investigation of Graphene quantum dots appears to be necessary including a full control of the wave function properties most favorably during transport spectroscopy measurements. Here, we review the recent success in mapping wave functions of graphene quantum dots supported by metals, in particular Ir(111), and show how the goal of probing such wave functions on insulating supports during transport spectroscopy might be achieved.Comment: 14 pages, review articl

    Tip-gating Effect in Scanning Impedance Microscopy of Nanoelectronic Devices

    Full text link
    Electronic transport in semiconducting single-wall carbon nanotubes is studied by combined scanning gate microscopy and scanning impedance microscopy (SIM). Depending on the probe potential, SIM can be performed in both invasive and non-invasive mode. High-resolution imaging of the defects is achieved when the probe acts as a local gate and simultaneously an electrostatic probe of local potential. A class of weak defects becomes observable even if they are located in the vicinity of strong defects. The imaging mechanism of tip-gating scanning impedance microscopy is discussed.Comment: 11 pages, 3 figures, to be published in Appl. Phys. Let

    Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies

    Full text link
    Scanning Surface Potential Microscopy (SSPM) is one of the most widely used techniques for the characterization of electrical properties at small dimensions. Applicability of SSPM and related electrostatic scanning probe microscopies for imaging of potential distributions in active micro- and nanoelectronic devices requires quantitative knowledge of tip surface contrast transfer. Here we demonstrate the utility of carbon-nanotube-based circuits to characterize geometric properties of the tip in the electrostatic scanning probe microscopies (SPM). Based on experimental observations, an analytical form for the differential tip-surface capacitance is obtained.Comment: 14 pages, 4 figure

    Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors

    Full text link
    The influence of defects on electron transport in single-wall carbon nanotube field effect transistors (CNFETs) is probed by combined scanning gate microscopy (SGM) and scanning impedance microscopy (SIM). SGM reveals a localized field effect at discrete defects along the CNFET length. The depletion surface potential of individual defects is quantified from the SGM-imaged radius of the defect as a function of tip bias voltage. This provides a measure of the Fermi level at the defect with zero tip voltage, which is as small as 20 meV for the strongest defects. The effect of defects on transport is probed by SIM as a function of backgate and tip-gate voltage. When the backgate voltage is set so the CNFET is "on" (conducting), SIM reveals a uniform potential drop along its length, consistent with diffusive transport. In contrast, when the CNFET is "off", potential steps develop at the position of depleted defects. Finally, high-resolution imaging of a second set of weak defects is achieved in a new "tip-gated" SIM mode.Comment: to appear in Physical Review Letter

    Energy dissipation in graphene field-effect transistors

    Full text link
    We measure the temperature distribution in a biased single-layer graphene transistor using Raman scattering microscopy of the 2D-phonon band. Peak operating temperatures of 1050 K are reached in the middle of the graphene sheet at 210 KW cm^(-2) of dissipated electric power. The metallic contacts act as heat sinks, but not in a dominant fashion. To explain the observed temperature profile and heating rate, we have to include heat-flow from the graphene to the gate oxide underneath, especially at elevated temperatures, where the graphene thermal conductivity is lowered due to umklapp scattering. Velocity saturation due to phonons with about 50 meV energy is inferred from the measured charge density via shifts in the Raman G-phonon band, suggesting that remote scattering (through field coupling) by substrate polar surface phonons increases the energy transfer to the substrate and at the same time limits the high-bias electronic conduction of graphene.Comment: The pdf-file contains the main manuscript (19 pages, 3 figures) and the supplement (5 pages, 4 figures

    Layer Number Determination and Thickness-dependent Properties of Graphene Grown on SiC

    Full text link
    The electronic properties of few-layer graphene grown on the carbon-face of silicon carbide (SiC) are found to be strongly dependent on the number of layers. The carrier mobility is larger in thicker graphene because substrate-related scattering is reduced in the higher layers. The carrier density dependence of the mobility is qualitatively different in thin and thick graphene, with the transition occurring at about 2 layers. The mobility increases with carrier density in thick graphene, similar to multi-layer graphene exfoliated from natural graphite, suggesting that the individual layers are still electrically coupled in spite of reports recording non-Bernal stacking order in C-face grown graphene. The Hall coefficient peak value is reduced in thick graphene due to the increased density of states. A reliable and rapid characterization tool for the layer number is therefore highly desirable. To date, AFM height determination and Raman scattering are typically used since the optical contrast of graphene on SiC is weak. However, both methods suffer from low throughput. We show that the scanning electron microscopy (SEM) contrast can give similar results with much higher throughput

    Carrier scattering, mobilities and electrostatic potential in mono-, bi- and tri-layer graphenes

    Full text link
    The carrier density and temperature dependence of the Hall mobility in mono-, bi- and tri-layer graphene has been systematically studied. We found that as the carrier density increases, the mobility decreases for mono-layer graphene, while it increases for bi-layer/tri-layer graphene. This can be explained by the different density of states in mono-layer and bi-layer/tri-layer graphenes. In mono-layer, the mobility also decreases with increasing temperature primarily due to surface polar substrate phonon scattering. In bi-layer/tri-layer graphene, on the other hand, the mobility increases with temperature because the field of the substrate surface phonons is effectively screened by the additional graphene layer(s) and the mobility is dominated by Coulomb scattering. We also find that the temperature dependence of the Hall coefficient in mono-, bi- and tri-layer graphene can be explained by the formation of electron and hole puddles in graphene. This model also explains the temperature dependence of the minimum conductance of mono-, bi- and tri-layer graphene. The electrostatic potential variations across the different graphene samples are extracted.Comment: 18 pages, 7 figure
    • …
    corecore