1,485 research outputs found

    Manipulating infrared photons using plasmons in transparent graphene superlattices

    Full text link
    Superlattices are artificial periodic nanostructures which can control the flow of electrons. Their operation typically relies on the periodic modulation of the electric potential in the direction of electron wave propagation. Here we demonstrate transparent graphene superlattices which can manipulate infrared photons utilizing the collective oscillations of carriers, i.e., plasmons of the ensemble of multiple graphene layers. The superlattice is formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, followed by patterning them all together into 3-dimensional photonic-crystal-like structures. We demonstrate experimentally that the collective oscillation of Dirac fermions in such graphene superlattices is unambiguously nonclassical: compared to doping single layer graphene, distributing carriers into multiple graphene layers strongly enhances the plasmonic resonance frequency and magnitude, which is fundamentally different from that in a conventional semiconductor superlattice. This property allows us to construct widely tunable far-infrared notch filters with 8.2 dB rejection ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a superlattice with merely five graphene atomic layers. Moreover, an unpatterned superlattice shields up to 97.5% of the electromagnetic radiations below 1.2 terahertz. This demonstration also opens an avenue for the realization of other transparent mid- and far-infrared photonic devices such as detectors, modulators, and 3-dimensional meta-material systems.Comment: under revie

    Competing biosecurity and risk rationalities in the Chittagong poultry commodity chain, Bangladesh

    Get PDF
    This paper anthropologically explores how key actors in the Chittagong live bird trading network perceive biosecurity and risk in relation to avian influenza between production sites, market maker scenes and outlets. They pay attention to the past and the present, rather than the future, downplaying the need for strict risk management, as outbreaks have not been reported frequently for a number of years. This is analysed as ‘temporalities of risk perception regarding biosecurity’, through Black Swan theory, the idea that unexpected events with major effects are often inappropriately rationalized (Taleb in The Black Swan. The impact of the highly improbable, Random House, New York, 2007). This incorporates a sociocultural perspective on risk, emphasizing the contexts in which risk is understood, lived, embodied and experienced. Their risk calculation is explained in terms of social consent, practical intelligibility and convergence of constraints and motivation. The pragmatic and practical orientation towards risk stands in contrast to how risk is calculated in the avian influenza preparedness paradigm. It is argued that disease risk on the ground has become a normalized part of everyday business, as implied in Black Swan theory. Risk which is calculated retrospectively is unlikely to encourage investment in biosecurity and, thereby, points to the danger of unpredictable outlier events

    Aryl hydrocarbon receptor is required for optimal B-cell proliferation

    Get PDF
    The aryl hydrocarbon receptor (AhR), a transcription factor known for mediating xenobiotic toxicity, is expressed in B cells, which are known targets for environmental pollutants. However, it is unclear what the physiological functions of AhR in B cells are. We show here that expression of Ahr in B cells is up‐regulated upon B‐cell receptor (BCR) engagement and IL‐4 treatment. Addition of a natural ligand of AhR, FICZ, induces AhR translocation to the nucleus and transcription of the AhR target gene Cyp1a1, showing that the AhR pathway is functional in B cells. AhR‐deficient (Ahr (−/−)) B cells proliferate less than AhR‐sufficient (Ahr (+/+)) cells following in vitro BCR stimulation and in vivo adoptive transfer models confirmed that Ahr (−/−) B cells are outcompeted by Ahr (+/+) cells. Transcriptome comparison of AhR‐deficient and AhR‐sufficient B cells identified cyclin O (Ccno), a direct target of AhR, as a top candidate affected by AhR deficiency

    You turn me cold: evidence for temperature contagion

    Get PDF
    Introduction During social interactions, our own physiological responses influence those of others. Synchronization of physiological (and behavioural) responses can facilitate emotional understanding and group coherence through inter-subjectivity. Here we investigate if observing cues indicating a change in another's body temperature results in a corresponding temperature change in the observer. Methods Thirty-six healthy participants (age; 22.9±3.1 yrs) each observed, then rated, eight purpose-made videos (3 min duration) that depicted actors with either their right or left hand in visibly warm (warm videos) or cold water (cold videos). Four control videos with the actors' hand in front of the water were also shown. Temperature of participant observers' right and left hands was concurrently measured using a thermistor within a Wheatstone bridge with a theoretical temperature sensitivity of <0.0001°C. Temperature data were analysed in a repeated measures ANOVA (temperature × actor's hand × observer's hand). Results Participants rated the videos showing hands immersed in cold water as being significantly cooler than hands immersed in warm water, F(1,34) = 256.67, p0.1). There was however no evidence of left-right mirroring of these temperature effects p>0.1). Sensitivity to temperature contagion was also predicted by inter-individual differences in self-report empathy. Conclusions We illustrate physiological contagion of temperature in healthy individuals, suggesting that empathetic understanding for primary low-level physiological challenges (as well as more complex emotions) are grounded in somatic simulation

    On duality symmetries of supergravity invariants

    Get PDF
    The role of duality symmetries in the construction of counterterms for maximal supergravity theories is discussed in a field-theoretic context from different points of view. These are: dimensional reduction, the question of whether appropriate superspace measures exist and information about non-linear invariants that can be gleaned from linearised ones. The former allows us to prove that F-term counterterms cannot be E7(7)-invariant in D=4, N=8 supergravity or E6(6)-invariant in D=5 maximal supergravity. This is confirmed by the two other methods which can also be applied to D=4 theories with fewer supersymmetries and allow us to prove that N=6 supergravity is finite at three and four loops and that N=5 supergravity is three-loop finite.Comment: Clarification of arguments and their consistency with higher dimensional divergences added, e.g. we prove the 5D 4L non-renormalisation theorem. The 4L N=6 divergence is also ruled out. References adde

    A telephone survey of cancer awareness among frontline staff: informing training needs

    Get PDF
    Background: Studies have shown limited awareness about cancer risk factors among hospital-based staff. Less is known about general cancer awareness among community frontline National Health Service and social care staff. Methods: A cross-sectional computer-assisted telephone survey of 4664 frontline community-based health and social care staff in North West England. Results: A total of 671 out of 4664 (14.4%) potentially eligible subjects agreed to take part. Over 92% of staff recognised most warning signs, except an unexplained pain (88.8%, n=596), cough or hoarseness (86.9%, n=583) and a sore that does not heal (77.3%, n=519). The bowel cancer-screening programme was recognised by 61.8% (n=415) of staff. Most staff agreed that smoking and passive smoking ‘increased the chance of getting cancer.’ Fewer agreed about getting sunburnt more than once as a child (78.0%, n=523), being overweight (73.5%, n=493), drinking more than one unit of alcohol per day (50.2%, n=337) or doing less than 30 min of moderate physical exercise five times a week (41.1%, n=276). Conclusion: Cancer awareness is generally good among frontline staff, but important gaps exist, which might be improved by targeted education and training and through developing clearer messages about cancer risk factors

    R^4 counterterm and E7(7) symmetry in maximal supergravity

    Get PDF
    The coefficient of a potential R^4 counterterm in N=8 supergravity has been shown previously to vanish in an explicit three-loop calculation. The R^4 term respects N=8 supersymmetry; hence this result poses the question of whether another symmetry could be responsible for the cancellation of the three-loop divergence. In this article we investigate possible restrictions from the coset symmetry E7(7)/SU(8), exploring the limits as a single scalar becomes soft, as well as a double-soft scalar limit relation derived recently by Arkani-Hamed et al. We implement these relations for the matrix elements of the R^4 term that occurs in the low-energy expansion of closed-string tree-level amplitudes. We find that the matrix elements of R^4 that we investigated all obey the double-soft scalar limit relation, including certain non-maximally-helicity-violating six-point amplitudes. However, the single-soft limit does not vanish for this latter set of amplitudes, which suggests that the E7(7) symmetry is broken by the R^4 term.Comment: 33 pages, typos corrected, published versio
    corecore