240 research outputs found
ACE inhibitor use in patients with myocardial infarction. Summary ofevidence from clinical trials
Experimental evidence for the beneficial effects on heart failure of chronic treatment with ACE inhibitors accumulated from early 1980 in experimental models of LV dysfunction secondary to AMI. These studies demonstrated an improvement in hemodynamics, LV remodeling, and mortality with ACE inhibitor treatment.
The effect of ACE inhibitors during the acute phase of AMI was less clear, although there was evidence of protection from ischemic damage, possibly mediated by an increase in collateral coronary blood flow
Tunable Lyapunov exponent in inverse magnetic billiards
The stability properties of the classical trajectories of charged particles
are investigated in a two dimensional stadium-shaped inverse magnetic domain,
where the magnetic field is zero inside the stadium domain and constant
outside. In the case of infinite magnetic field the dynamics of the system is
the same as in the Bunimovich billiard, i.e., ergodic and mixing. However, for
weaker magnetic fields the phase space becomes mixed and the chaotic part
gradually shrinks. The numerical measurements of the Lyapunov exponent
(performed with a novel method) and the integrable/chaotic phase space volume
ratio show that both quantities can be smoothly tuned by varying the external
magnetic field. A possible experimental realization of the arrangement is also
discussed.Comment: 4 pages, 6 figure
Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots
We show that the parametric correlations of the conductance peak amplitudes
of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime
become universal upon an appropriate scaling of the parameter. We compute the
universal forms of this correlator for both cases of conserved and broken time
reversal symmetry. For a symmetric dot the correlator is independent of the
details in each lead such as the number of channels and their correlation. We
derive a new scaling, which we call the rotation scaling, that can be computed
directly from the dot's eigenfunction rotation rate or alternatively from the
conductance peak heights, and therefore does not require knowledge of the
spectrum of the dot. The relation of the rotation scaling to the level velocity
scaling is discussed. The exact analytic form of the conductance peak
correlator is derived at short distances. We also calculate the universal
distributions of the average level width velocity for various values of the
scaled parameter. The universality is illustrated in an Anderson model of a
disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure
P Systems with Minimal Left and Right Insertion and Deletion
In this article we investigate the operations of insertion and deletion performed
at the ends of a string. We show that using these operations in a P systems
framework (which corresponds to using specific variants of graph control), computational
completeness can even be achieved with the operations of left and right insertion and
deletion of only one symbol
U(N) spinning particles and higher spin equations on complex manifolds
Guided by a spinning particle model with U(N)-extended supergravity on the
worldline we derive higher spin equations on complex manifolds. Their minimal
formulation is in term of gauge fields which satisfy suitable constraints. The
latter can be relaxed by introducing compensator fields. There is an
obstruction to define these systems on arbitrarily curved spaces, just as in
the usual theory of higher spin fields, but we show how to couple them to
Kaehler manifolds of constant holomorphic curvature. Quite interestingly, the
first class gauge algebra defining the U(N) particles on these manifolds is
quadratic and realizes the zero mode sector of certain nonlinear U(N)
superconformal algebras introduced sometimes ago by Bershadsky and Knizhnik in
2D.Comment: 26 page
Genetic loci of Staphylococcus aureus associated with anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides
The proteinase 3 (PR3)-positive anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) granulomatosis with polyangiitis (GPA) has been associated with chronic nasal S. aureus carriage, which is a risk factor for disease relapse. The present study was aimed at comparing the genetic make-up of S. aureus isolates from PR3-ANCA-positive GPA patients with that of isolates from patients suffering from myeloperoxidase (MPO)-ANCA-positive AAV, and isolates from healthy controls. Based on a DNA microarray-based approach, we show that not only PR3-ANCA-positive GPA patients, but also MPO-ANCA-positive AAV patients mainly carried S. aureus types that are prevalent in the general population. Nonetheless, our data suggests that MPO-ANCA-associated S. aureus isolates may be distinct from healthy control- and PR3-ANCA-associated isolates. Furthermore, several genetic loci of S. aureus are associated with either PR3-ANCA- or MPO-ANCA-positive AAV, indicating a possible role for pore-forming toxins, such as leukocidins, in PR3-ANCA-positive GPA. Contrary to previous studies, no association between AAV and superantigens was detected. Our findings also show that a lowered humoral immune response to S. aureus is common for PR3-ANCA- and MPO-ANCA-positive AAV. Altogether, our observations imply that the presence or absence of particular virulence genes of S. aureus isolates from AAV patients contributes to disease progression and/or relapse
Increased numbers of oligodendrocyte lineage cells in the optic nerves of cerebroside sulfotransferase knockout mice
Sulfatide is a myelin glycolipid that functions in the formation of paranodal axo-glial junctions in vivo and in the regulation of oligodendrocyte differentiation in vitro. Cerebroside sulfotransferase (CST) catalyzes the production of two sulfated glycolipids, sulfatide and proligodendroblast antigen, in oligodendrocyte lineage cells. Recent studies have demonstrated significant increases in oligodendrocytes from the myelination stage through adulthood in brain and spinal cord under CST-deficient conditions. However, whether these result from excess migration or in situ proliferation during development is undetermined. In the present study, CST-deficient optic nerves were used to examine migration and proliferation of oligodendrocyte precursor cells (OPCs) under sulfated glycolipid-deficient conditions. In adults, more NG2-positive OPCs and fully differentiated cells were observed. In developing optic nerves, the number of cells at the leading edge of migration was similar in CST-deficient and wild-type mice. However, BrdU+ proliferating OPCs were more abundant in CST-deficient mice. These results suggest that sulfated glycolipids may be involved in proliferation of OPCs in vivo
Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
- …