15 research outputs found

    Allergenicity and oral tolerance of enzymatic cross-linked tropomyosin evaluated using cell and mouse models

    Get PDF
    The enzymatic cross-linking of proteins to form high-molecular-weight compounds may alter their sensitization potential. The IgG-/IgE-binding activity, digestibility, allergenicity, and oral tolerance of cross-linked tropomyosin with tyrosinase (CTC) or horseradish peroxidase (CHP) were investigated. ELISA results demonstrated CTC or CHP reduced its IgE-binding activity by 34.5 ± 1.8 and 63.5 ± 0.6%, respectively. Compared with native tropomyosin or CTC, CHP was more easily digested into small fragments; CHP decreased the degranulation of RBL-2H3 cells and increased endocytosis by dendritic cells. CHP can induce oral tolerance and reduce allergenicity in mice by decreasing IgE and IgG1 levels in serum, the production of T-cell cytokines, and the percentage composition of dendritic cells. These findings demonstrate CHP has more potential of reducing the allergenicity than CTC via influencing the morphology of protein, changing the original method of antigen presentation, modulating the Th1/Th2 immunobalance, and inducing the oral tolerance of the allergen tropomyosin

    Multimeric recombinant antibody (scFv) for ELISA detection of allergenic walnut: an alternative to animal antibodies

    Get PDF
    Walnuts are classified as an important allergenic ingredient that can cause severe reactions in sensitized individuals. To prevent unintended exposure to products containing walnut, food manufacturers have the responsibility to declare its presence in packaged foods. Immunochemical methods are widely used to detect walnut proteins. However, available immunoassays rely on the use of antibodies raised in animals. In this work, an affinity probe for walnut proteins has been isolated from the Tomlinson I library, and further engineered in Pichia pastoris to produce the in vivo Juglans regia Biotinylated Soluble Fragment-single chain multimeric antibody (JrBSF-scFv). The multimeric scFv has been used to develop a direct enzyme-linked immunosorbent assay (ELISA), allowing detection of walnut in a food matrix with a limit of detection (LOD) of 1616 mg kg-1. This is the first recombinant antibody available for detection of walnut proteins. The assay is specific, only cross-reacting to some extent (2.25 %) to pecan, thus being useful as a screening tool for detection of walnut in raw or baked food matrices. Multimerization of the scFv with different avidin derivates could be of interest to improve sensitivity of the assay

    Novel in vitro diagnosis of equine allergies using a protein array and mathematical modelling approach: a proof of concept using insect bite hypersensitivity

    Get PDF
    Insect bite hypersensitivity (IBH) is a seasonal recurrent skin allergy of horses caused by IgE-mediated reactions to allergens present in the saliva of biting insects of the genus Culicoides, and possibly also Simulium and Stomoxys species. In this work we show that protein microarrays containing complex extracts and pure proteins, including recombinant Culicoides allergens, can be used as a powerful technique for the diagnosis of IBH. Besides the obvious advantages such as general profiling and use of few microliters of samples, this microarray technique permits automation and allows the generation of mathematical models with the calculation of individual risk profiles that can support the clinical diagnosis of allergic diseases. After selection of variables on influence on the projection (VIP), the observed values of sensitivity and specificity were 1.0 and 0.967, respectively. This confirms the highly discriminatory power of this approach for IBH and made it possible to attain a robust predictive mathematical model for this disease. It also further demonstrates the specificity of the protein array method on identifying a particular IgE-mediated disease when the sensitising allergen group is known

    Characterization of human FcεRIα chain expression and gene copy number in humanized rat basophilic leukaemia (RBL) reporter cell lines

    Get PDF
    Several laboratories have created rat basophil leukemia (RBL) cell lines stably transfected with the human high affinity IgE receptor (FcεRI H). More recently, humanized RBL cell lines saw the introduction of reporter genes such as luciferase (RS-ATL8) and DsRed (RBL NFAT-DsRed). These reporters are more sensitive than their parental non-reporter human-ized RBL cell lines. However, no studies so far have addressed the levels of FcεRI H surface expression on humanized RBL cell lines. This is a critical parameter, as it determines the ability of these cells to be efficiently sensitized with human IgE, hence it should affect the sensitivity of the cell assay-a critical parameter for any diagnostic application. Our purpose was to assess and compare the levels of expression of the transfected FcεRI H chain in humanized RBL cell lines. We compared surface levels of FcεRIα H by flow cytometry, using a fluorescently labelled monoclonal antibody (CRA-1/AER-37) and determined receptor numbers using calibration microspheres. FcεRIα H copy numbers were assessed by qPCR, and the sequence verified. Transfection with FcεRIγ H cDNA was assessed for its ability to increase FcεRIα H expression in the NFAT-DsRed reporter. While both SX-38 and RS-ATL8 expressed about 500.000 receptors/cell, RBL 703-21 and NFAT-DsRed had approximately 10-to 30-fold lower FcεRIα H expression, respectively. This was neither related to FcεRI H gene copy numbers, nor to differences in steady state mRNA levels, as determined by qPCR and RT-qPCR, respectively. Instead, FcεRIα H surface expression appeared to correlate with the co-expression of FcεRIγ H. Stable transfection of NFAT-DsRed cells with pBJ1 neo-huFcεRI gamma, which constitutively expresses FcεRIγ H , increased FcεRIα H chain expression levels. Levels of FcεRIα H surface expression vary greatly between humanized RBL reporter cell lines. This difference will affect the sensitivity of the reporter system when used for diagnostic purposes

    Differential polarisation of immune responses by plant 2S seed albumins, Ber e 1 and SFA8

    No full text
    The plant 2S seed albumins Ber e 1 and SFA8, although structurally very similar, vary with respect to their allergenic properties. Whereas the former represents a major allergen, the latter appears to promote only weak allergenic responses. The aim of this investigation was to determine whether the allergenic properties of Ber e 1 and SFA8 reflected differential polarization of dendritic cell (DC) and Th cell responses. We thus investigated the effect of recombinant forms of both allergens on DC and Th cell responses as indicated by cell surface phenotype and cytokine production. Exposure of murine DCs to SFA8, but not Ber e 1, resulted in production of the cytokines IL-12 p40 and TNF-{alpha} by a mechanism independent of recognition by TLRs. Furthermore, depending on the mouse strain used, increased expression of MHC class II and costimulatory molecules such as CD40, CD80, and CD86 was associated with exposure to SFA8, but not Ber e 1. In coculture experiments using the DO11.10 transgenic T cell that recognizes OVA peptide, DCs exposed to both allergens induced T cells to produce IFN-{gamma}, but only Ber e 1 could induce significant production of IL-4 and IL-5. Likewise, analysis of transcription factors shows increased T-bet with respect to both allergens, but also GATA-3 with respect to Ber e 1. Overall, our data are consistent with the idea that the ability of Ber e 1, but not SFA8, to act as a potent allergen may reflect differences in their ability to induce IL-12 production

    The phosphorycholine moiety of the filarial nematode immunomodulator ES-62 is responsible for its anti-inflammatory action in arthritis

    No full text
    In countries where parasitic infections are endemic, autoimmune disease is relatively rare, leading to the hypothesis that parasite-derived immunomodulators may protect against its development. Consistent with this, we have previously demonstrated that ES-62, a 62 kDa phosphorylcholine (PC)-containing glycoprotein that is secreted by filarial nematodes, can exert anti-inflammatory action in the murine collagen-induced arthritis (CIA) model and human rheumatoid arthritis-derived synovial tissue cultures. As a first step to developing ES-62-based drugs, the aim of this study was to determine whether the PC-moiety of ES-62 was responsible for its anti-inflammatory actions. We compared the anti-inflammatory activity of a PC-free form of recombinant ES-62 (rES-62) and a synthetic PC-ovalbumin conjugate (OVA-PC) with that of native ES-62 in the CIA model and synovial tissues from patients with rheumatoid arthritis. Results: The anti-inflammatory actions of ES-62 in CIA appear to be dependent on the PC moiety as indicated by the reduction in severity of disease and also suppression of collagen-specific T helper 1 cytokine production observed when testing OVA-PC, but not rES-62. Interestingly, the anti-inflammatory activity of PC did not correlate with a reduction in anti-collagen IgG2a levels. Also, the ES-62-mediated suppression of interferon- from human patient tissues could be mimicked by OVA-PC but not rES-62 or ovalbumin. In countries where filariasis is endemic the reduced detection of inflammatory diseases, such as rheumatoid arthritis may be because of the anti-inflammatory action of the PC moieties of ES-62. PC may thus provide the starting point for the development of novel, safe immunomodulatory therapies

    The Disulphide Mapping, Folding and Characterisation of Recombinant Ber e 1, an Allergenic Protein, and SFA8, Two Sulphur-rich 2 S Plant Albumins

    Full text link
    We have cloned and expressed genes encoding the allergenic brazil nut 2 S albumin (Ber e 1) and the sunflower albumin 8 (SFA8) in the methylotrophic yeast Pichia pastoris. We show that both proteins were secreted at high levels and that the purified proteins were properly folded. We also showed that Ber e 1 is glycosylated during secretion and that the glycan does not interfere with the folding or immunoreactivity. The disulphide map of the Ber e 1 protein was experimentally established and is in agreement with the conserved disulphide structure of other members of the 2 S albumin family. A model three-dimensional structure of the allergen was generated. During the expression studies and through mutation we have also shown that alteration of the sequences around the Kex2 endoproteolytic processing site in the expressed fusion protein can compromise the secretion by targeting part of the protein for possible degradation. The secreted production of these properly folded sulphurrich plant albumins presents an opportunity to delineate the attributes that make an allergen and to facilitate the diagnosis and therapy of type I allergy

    Rationalising Lysozyme Amyloidosis: Insights from the Structure and Solution Dynamics of T70N Lysozyme

    Full text link
    T70N human lysozyme is the only known naturally occurring destabilised lysozyme variant that has not been detected in amyloid deposits in human patients. Its study and a comparison of its properties with those of the amyloidogenic variants of lysozyme is therefore important for understanding the determinants of amyloid disease. We report here the X-ray crystal structure and the solution dynamics of T70N lysozyme, as monitored by hydrogen/deuterium exchange and NMR relaxation experiments. The X-ray crystal structure shows that a substantial structural rearrangement results from the amino acid substitution, involving residues 45–51 and 68–75 in particular, and gives rise to a concomitant separation of these two loops of up to 6.5 Å. A marked decrease in the magnitudes of the generalised order parameter (S2) values of the amide nitrogen atom, for residues 70–74, shows that the T70N substitution increases the flexibility of the peptide backbone around the site of mutation. Hydrogen/deuterium exchange protection factors measured by NMR spectroscopy were calculated for the T70N variant and the wild-type protein. The protection factors for many of backbone amide groups in the β-domain of the T70N variant are decreased relative to those in the wild-type protein, whereas those in the α-domain display wild-type-like values. In pulse-labelled hydrogen/deuterium exchange experiments monitored by mass spectrometry, transient but locally cooperative unfolding of the β-domain of the T70N variant and the wild-type protein was observed, but at higher temperatures than for the amyloidogenic variants I56T and D67H. These findings reveal that such partial unfolding is an intrinsic property of the human lysozyme structure, and suggest that the readiness with which it occurs is a critical feature determining whether or not amyloid deposition occurs in vivo
    corecore