289 research outputs found
Symmetry causes a huge conductance peak in double quantum dots
We predict a huge interference effect contributing to the conductance through
large ultra-clean quantum dots of chaotic shape. When a double-dot structure is
made such that the dots are the mirror-image of each other, constructive
interference can make a tunnel barrier located on the symmetry axis effectively
transparent. We show (via theoretical analysis and numerical simulation) that
this effect can be orders of magnitude larger than the well-known universal
conductance fluctuations and weak-localization (both less than a conductance
quantum). A small magnetic field destroys the effect, massively reducing the
double-dot conductance; thus a magnetic field detector is obtained, with a
similar sensitivity to a SQUID, but requiring no superconductors.Comment: 5pages 3 figures and an appendix ONLY in arXiv versio
Geometry-dependent conductance and noise behavior of a graphene ribbon with a series of randomly spaced potential barriers
We perform an envelope-function based numerical analysis of the effect of a sequence of randomly spaced potential barriers on the conductance and shot noise of an armchair graphene ribbon. The behavior is dominated by Klein tunneling and by resonant tunneling and strongly depends on the geometrical details of the device. Klein tunneling effectively filters the modes that can propagate through the device. For a large number of cascaded barriers, this gives rise to different transport regimes for metallic and semiconducting ribbons, with diverging shot noise behaviors. Resonant tunneling is instead energy selective and has quite a different effect depending on whether the barriers are identical or not. We also explore the effect of tilting the barriers with respect to the ribbon edges, observing a transition toward a diffusive transport regime and a one-third shot noise suppression. We investigate this effect, and we find that it takes place also in more traditional semiconducting materials. The results of our analysis could be instrumental for the fabrication of mode-filtering and energy-filtering graphene-based nanodevices. Moreover, our study highlights the importance of the measurement of shot noise as a probe for the nature of the transport regime
Numerical analysis of the resistance behavior of an electrostatically-induced graphene double junction
We present a numerical approach that we have developed in order to reproduce and explain the resistance behavior recently observed, as a function of the backgate voltage and of the position of a biased scanning probe, in a graphene flake in which a double p-n junction has been electrostatically induced. A simplified electrostatic model has been adopted to simulate the effect of gate voltages on the potential landscape, assuming for it a slow variation in space and using a simple capacitive model for the coupling between the electrodes and the graphene sheet. The transport analysis has then been performed with a solution of the Dirac equation in the reciprocal space coupled with a recursive scattering matrix approach. The efficiency of the adopted numerical procedure has allowed us to explore a wide range of possible potential landscapes and bias points, with the result of achieving a good agreement with available experimental data
Orbital magnetic susceptibility of finite-sized graphene
We study the orbital magnetism of graphene ribbon in the effective-mass
approximation, to figure out the finite-size effect on the singular
susceptibility known in the bulk limit. We find that the susceptibility at T =
0 oscillates between diamagnetism and paramagnetism as a function of Fermi
energy, in accordance with the subband structure formed by quantum confinement.
In increasing T, the oscillation rapidly disappears once the thermal broadening
energy exceeds the subband spacing, and the susceptibility approaches the bulk
limit i.e., a thermally broadened diamagnetic peak centered at zero energy
point. The electric current supporting the diamagnetism is found to flow near
the edge with a depth which proportional to reciprocal of T, with v being the
band velocity, while at T = 0 the current distribution spreads entirely in the
sample reflecting the absence of the characteristic wavelength in graphene. The
result is applied to estimate the three-dimensional random-stacked multilayer
graphene, where we show that the external magnetic field is significantly
screened inside the sample in low temperatures, in a much stronger manner than
in graphite
Analysis of shot noise suppression in mesoscopic cavities in a magnetic field
We present a numerical investigation of shot noise suppression in mesoscopic
cavities and an intuitive semiclassical explanation of the behavior observed in
the presence of an orthogonal magnetic field. In particular, we conclude that
the decrease of shot noise for increasing magnetic field is the result of the
interplay between the diameter of classical cyclotron orbits and the width of
the apertures defining the cavity. Good agreement with published experimental
results is obtained, without the need of introducing fitting parameters.Comment: 5 pages, 3 figures, contents changed (final version
- …