996 research outputs found
An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications
The millimeter wave (mmWave) frequencies offer the potential of orders of
magnitude increases in capacity for next-generation cellular systems. However,
links in mmWave networks are susceptible to blockage and may suffer from rapid
variations in quality. Connectivity to multiple cells - at mmWave and/or
traditional frequencies - is considered essential for robust communication. One
of the challenges in supporting multi-connectivity in mmWaves is the
requirement for the network to track the direction of each link in addition to
its power and timing. To address this challenge, we implement a novel uplink
measurement system that, with the joint help of a local coordinator operating
in the legacy band, guarantees continuous monitoring of the channel propagation
conditions and allows for the design of efficient control plane applications,
including handover, beam tracking and initial access. We show that an
uplink-based multi-connectivity approach enables less consuming, better
performing, faster and more stable cell selection and scheduling decisions with
respect to a traditional downlink-based standalone scheme. Moreover, we argue
that the presented framework guarantees (i) efficient tracking of the user in
the presence of the channel dynamics expected at mmWaves, and (ii) fast
reaction to situations in which the primary propagation path is blocked or not
available.Comment: Submitted for publication in IEEE Transactions on Wireless
Communications (TWC
Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration
Communications at frequencies above 10 GHz (the mmWave band) are expected to
play a major role for the next generation of cellular networks (5G), because of
the potential multi-gigabit, ultra-low latency performance of this technology.
mmWave frequencies however suffer from very high isotropic pathloss, which may
result in cells with a much smaller coverage area than current LTE macrocells.
High directionality techniques will be used to improve signal quality and
extend coverage area, along with a high density deployment of mmWave base
stations (BS). However, when propagation conditions are hard and it is
difficult to provide high quality coverage with mmWave BS, it is necessary to
rely on previous generation LTE base stations, which make use of lower
frequencies (900 MHz - 3.5 GHz), which are less sensitive to blockage and
experience lower pathloss. In order to provide ultra-reliable services to
mobile users there is a need for network architectures that tightly and
seamlessly integrate the LTE and mmWave Radio Access Technologies. In this
paper we will present two possible alternatives for this integration and show
how simulation tools can be used to assess and compare their performance.Comment: This paper was accepted for presentation at the ninth EAI SIMUtools
2016 conference, August 22 - 23, 2016, Prague, Czech Republi
Spatial and verbal routes to number comparison in young children
The ability to compare the numerical magnitude of symbolic numbers represents a milestone in the development of numerical skills. However, it remains unclear how basic numerical abilities contribute to the understanding of symbolic magnitude and whether the impact of these abilities may vary when symbolic numbers are presented as number words (e.g., \u201csix vs. eight\u201d) vs. Arabic numbers (e.g., 6 vs. 8). In the present study on preschool children, we show that comparison of number words is related to cardinality knowledge whereas the comparison of Arabic digits is related to both cardinality knowledge and the ability to spatially map numbers. We conclude that comparison of symbolic numbers in preschool children relies on multiple numerical skills and representations, which can be differentially weighted depending on the presentation format. In particular, the spatial arrangement of digits on the number line seems to scaffold the development of a \u201cspatial route\u201d to understanding the exact magnitude of numerals
Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks
The millimeter wave (mmWave) bands offer the possibility of orders of
magnitude greater throughput for fifth generation (5G) cellular systems.
However, since mmWave signals are highly susceptible to blockage, channel
quality on any one mmWave link can be extremely intermittent. This paper
implements a novel dual connectivity protocol that enables mobile user
equipment (UE) devices to maintain physical layer connections to 4G and 5G
cells simultaneously. A novel uplink control signaling system combined with a
local coordinator enables rapid path switching in the event of failures on any
one link. This paper provides the first comprehensive end-to-end evaluation of
handover mechanisms in mmWave cellular systems. The simulation framework
includes detailed measurement-based channel models to realistically capture
spatial dynamics of blocking events, as well as the full details of MAC, RLC
and transport protocols. Compared to conventional handover mechanisms, the
study reveals significant benefits of the proposed method under several
metrics.Comment: 16 pages, 13 figures, to appear on the 2017 IEEE JSAC Special Issue
on Millimeter Wave Communications for Future Mobile Network
Improved User Tracking in 5G Millimeter Wave Mobile Networks via Refinement Operations
The millimeter wave (mmWave) frequencies offer the availability of huge
bandwidths to provide unprecedented data rates to next-generation cellular
mobile terminals. However, directional mmWave links are highly susceptible to
rapid channel variations and suffer from severe isotropic pathloss. To face
these impairments, this paper addresses the issue of tracking the channel
quality of a moving user, an essential procedure for rate prediction, efficient
handover and periodic monitoring and adaptation of the user's transmission
configuration. The performance of an innovative tracking scheme, in which
periodic refinements of the optimal steering direction are alternated to
sparser refresh events, are analyzed in terms of both achievable data rate and
energy consumption, and compared to those of a state-of-the-art approach. We
aim at understanding in which circumstances the proposed scheme is a valid
option to provide a robust and efficient mobility management solution. We show
that our procedure is particularly well suited to highly variant and unstable
mmWave environments.Comment: Accepted for publication to the 16th IEEE Annual Mediterranean Ad Hoc
Networking Workshop (MED-HOC-NET), Jun. 201
Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence
IEEE Access
Volume 3, 2015, Article number 7217798, Pages 1512-1530
Open Access
Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article)
Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc
a Department of Information Engineering, University of Padua, Padua, Italy
b Department of General Psychology, University of Padua, Padua, Italy
c IRCCS San Camillo Foundation, Venice-Lido, Italy
View additional affiliations
View references (107)
Abstract
In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network
Initial Access in 5G mm-Wave Cellular Networks
The massive amounts of bandwidth available at millimeter-wave frequencies
(roughly above 10 GHz) have the potential to greatly increase the capacity of
fifth generation cellular wireless systems. However, to overcome the high
isotropic pathloss experienced at these frequencies, high directionality will
be required at both the base station and the mobile user equipment to establish
sufficient link budget in wide area networks. This reliance on directionality
has important implications for control layer procedures. Initial access in
particular can be significantly delayed due to the need for the base station
and the user to find the proper alignment for directional transmission and
reception. This paper provides a survey of several recently proposed techniques
for this purpose. A coverage and delay analysis is performed to compare various
techniques including exhaustive and iterative search, and Context Information
based algorithms. We show that the best strategy depends on the target SNR
regime, and provide guidelines to characterize the optimal choice as a function
of the system parameters.Comment: 6 pages, 3 figures, 3 tables, 15 references, submitted to IEEE COMMAG
201
Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios
Connectivity is probably the most basic building block of the Internet of
Things (IoT) paradigm. Up to know, the two main approaches to provide data
access to the \emph{things} have been based either on multi-hop mesh networks
using short-range communication technologies in the unlicensed spectrum, or on
long-range, legacy cellular technologies, mainly 2G/GSM, operating in the
corresponding licensed frequency bands. Recently, these reference models have
been challenged by a new type of wireless connectivity, characterized by
low-rate, long-range transmission technologies in the unlicensed sub-GHz
frequency bands, used to realize access networks with star topology which are
referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we
introduce this new approach to provide connectivity in the IoT scenario,
discussing its advantages over the established paradigms in terms of
efficiency, effectiveness, and architectural design, in particular for the
typical Smart Cities applications
- …
