271 research outputs found
The role of attention on numerosity perception and number adaptation in adults, typical and atypical children.
Autism Spectrum Disorder within Neurodevelopmental Disorders: Catching Heterogeneity, Specificity and Comorbidity in Clinical Phenotypes and Neurobiological Bases
Spatiotopic perceptual maps in humans: evidence from motion adaptation
How our perceptual experience of the world remains stable and continuous despite the frequent repositioning eye movements remains very much a mystery. One possibility is that our brain actively constructs a spatiotopic representation of the world, which is anchored in external—or at least head-centred—coordinates. In this study, we show that the positional motion aftereffect (the change in apparent position after adaptation to motion) is spatially selective in external rather than retinal coordinates, whereas the classic motion aftereffect (the illusion of motion after prolonged inspection of a moving source) is selective in retinotopic coordinates. The results provide clear evidence for a spatiotopic map in humans: one which can be influenced by image motion
Editorial: Autism spectrum disorder within neurodevelopmental disorders: Catching heterogeneity, specificity, and comorbidity in clinical phenotypes and neurobiological bases
The effects of cross-sensory attentional demand on subitizing and on mapping number onto space
Various aspects of numerosity judgments, especially subitizing and the mapping of number onto space, depend strongly on attentional resources. Here we use a dual-task paradigm to investigate the effects of cross-sensory attentional demands on visual subitizing and spatial mapping. The results show that subitizing is strongly dependent on attentional resources, far more so than is estimation of higher numerosities. But unlike many other sensory tasks, visual subitizing is equally affected by concurrent attentionally demanding auditory and tactile tasks as it is by visual tasks, suggesting that subitizing may be amodal. Mapping number onto space was also strongly affected by attention, but only when the dual-task was in the visual modality. The non-linearities in numberline mapping under attentional load are well explained by a Bayesian model of central tendency. © 2012 Elsevier Ltd
Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects
We have recently provided evidence that the perception of number and texture density is mediated by two independent mechanisms: numerosity mechanisms at relatively low numbers, obeying Weber's law, and texture-density mechanisms at higher numerosities, following a square root law. In this study we investigated whether the switch between the two mechanisms depends on the capacity to segregate individual dots, and therefore follows similar laws to those governing visual crowding. We measured numerosity discrimination for a wide range of numerosities at three eccentricities. We found that the point where the numerosity regime (Weber's law) gave way to the density regime (square root law) depended on eccentricity. In central vision, the regime changed at 2.3 dots/°2, while at 15° eccentricity, it changed at 0.5 dots/°2, three times less dense. As a consequence, thresholds for low numerosities increased with eccentricity, while at higher numerosities thresholds remained constant. We further showed that like crowding, the regime change was independent of dot size, depending on distance between dot centers, not distance between dot edges or ink coverage. Performance was not affected by stimulus contrast or blur, indicating that the transition does not depend on low-level stimulus properties. Our results reinforce the notion that numerosity and texture are mediated by two distinct processes, depending on whether the individual elements are perceptually segregable. Which mechanism is engaged follows laws that determine crowding
Innocent strategies as presheaves and interactive equivalences for CCS
Seeking a general framework for reasoning about and comparing programming
languages, we derive a new view of Milner's CCS. We construct a category E of
plays, and a subcategory V of views. We argue that presheaves on V adequately
represent innocent strategies, in the sense of game semantics. We then equip
innocent strategies with a simple notion of interaction. This results in an
interpretation of CCS.
Based on this, we propose a notion of interactive equivalence for innocent
strategies, which is close in spirit to Beffara's interpretation of testing
equivalences in concurrency theory. In this framework we prove that the
analogues of fair and must testing equivalences coincide, while they differ in
the standard setting.Comment: In Proceedings ICE 2011, arXiv:1108.014
Reduced 2D form coherence and 3D structure from motion sensitivity in developmental dyscalculia
Fast saccadic eye-movements in humans suggest that numerosity perception is automatic and direct
Fast saccades are rapid automatic oculomotor responses to salient and ecologically important visual stimuli such as animals and faces. Discriminating the number of friends, foe, or prey may also have an evolutionary advantage. In this study, participants were asked to saccade rapidly towards the more numerous of two arrays. Participants could discriminate numerosities with high accuracy and great speed, as fast as 190 ms. Intermediate numerosities were more likely to elicit fast saccades than very low or very high numerosities. Reaction-times for vocal responses (collected in a separate experiment) were slower, did not depend on numerical range, and correlated only with the slow not the fast saccades, pointing to different systems. The short saccadic reaction-times we observe are surprising given that discrimination using numerosity estimation is thought to require a relatively complex neural circuit, with several relays of information through the parietal and prefrontal cortex. Our results suggest that fast numerosity-driven saccades may be generated on a single feed-forward pass of information recruiting a primitive system that cuts through the cortical hierarchy and rapidly transforms the numerosity information into a saccade command
- …
