193 research outputs found
Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut
BACKGROUND: Hazelnut (Corylus avellana) decline disease in Greece and Italy is caused by the convergent evolution of two distantly related lineages of Pseudomonas syringae pv. avellanae (Pav). We sequenced the genomes of three Pav isolates to determine if their convergent virulence phenotype had a common genetic basis due to either genetic exchange between lineages or parallel evolution. RESULTS: We found little evidence for horizontal transfer (recombination) of genes between Pav lineages, but two large genomic islands (GIs) have been recently acquired by one of the lineages. Evolutionary analyses of the genes encoding type III secreted effectors (T3SEs) that are translocated into host cells and are important for both suppressing and eliciting defense responses show that the two Pav lineages have dramatically different T3SE profiles, with only two shared putatively functional T3SEs. One Pav lineage has undergone unprecedented secretome remodeling, including the acquisition of eleven new T3SEs and the loss or pseudogenization of 15, including five of the six core T3SE families that are present in the other Pav lineage. Molecular dating indicates that divergence within both of the Pav lineages predates their observation in the field. This suggest that both Pav lineages have been cryptically infecting hazelnut trees or wild relatives for many years, and that the emergence of hazelnut decline in the 1970s may have been due to changes in agricultural practice. CONCLUSIONS: These data show that divergent lineages of P. syringae can converge on identical disease etiology on the same host plant using different virulence mechanisms and that dramatic shifts in the arsenal of T3SEs can accompany disease emergence
Orthology-Based Estimate of the Contribution of Horizontal Gene Transfer from Distantly Related Bacteria to the Intraspecific Diversity and Differentiation of Xylella fastidiosa
Xylella fastidiosa is a xylem-limited bacterium phylogenetically related to the xanthomonads, with an unusually large and diversified range of plant hosts. To ascertain the origin of its peculiarities, its pan-genome was scanned to identify the genes that are not coherent with its phylogenetic position within the order Xanthomonadales. The results of the analysis revealed that a large fraction of the genes of the Xylella pan-genome have no ortholog or close paralog in the order Xanthomonadales. For a significant part of the genes, the closest homologue was found in bacteria belonging to distantly related taxonomic groups, most frequently in the Betaproteobacteria. Other species, such as Xanthomonas vasicola and Xanthomonas albilineans which were investigated for comparison, did not show a similar genetic contribution from distant branches of the prokaryotic tree of life. This finding indicates that the process of acquisition of DNA from the environment is still a relevant component of Xylella fastidiosa evolution. Although the ability of Xylella fastidiosa strains to recombine among themselves is well known, the results of the pan-genome analyses stressed the additional relevance of environmental DNA in shaping their genomes, with potential consequences on their phytopathological features
Xylella fastidiosa subsp. pauca, Neofusicoccum spp. and the decline of olive trees in salento (Apulia, Italy). Comparison of symptoms, possible interactions, certainties and doubts
Xylella fastidiosa subsp. pauca (XFP), Neofusicoccum mediterraneum, N. stellenboschiana and other fungi have been found in olive groves of Salento (Apulia, Italy) that show symptoms of severe decline. XFP is well known to be the cause of olive quick decline syndrome (OQDS). It has also been assessed that Neofusicoccum spp. causes a distinct disease syndrome, namely, branch and twig dieback (BTD). All these phytopathogens incite severe symptoms that can compromise the viability of large canopy sectors or the whole tree. However, their specific symptoms are not easily distinguished, especially during the final stages of the disease when branches are definitively desiccated. By contrast, they can be differentiated during the initial phases of the infection when some facets of the diseases are typical, especially wood discoloration, incited solely by fungi. Here, we describe the typical symptomatological features of OQDS and BTD that can be observed in the field and that have been confirmed by Koch postulate experiments. Similar symptoms, caused by some abiotic adverse conditions and even by additional biotic factors, are also described. Thus, this review aims at: (i) raising the awareness that declining olive trees in Salento do not have to be linked a priori to XFP; (ii) defining the guidelines for a correct symptomatic diagnosis to orient proper laboratory analyses, which is crucial for the application of effective control measures. The possibility that bacterium and fungi could act as a polyspecies and in conjunction with predisposing abiotic stresses is also widely discussed
Diplodia seriata isolated from declining olive trees in Salento (Apulia, Italy): pathogenicity trials give a glimpse that it is more virulent to drought-stressed olive trees and in a warmth-conditioned environment
The fungi Botryosphaeriaceae are involved in olive declines in both the world hemispheres and in all continents where this species is cultivated. In Salento (Apulia, Italy), the Botryosphaeriaceae Neofusicoccum mediterraneum and N. stellenboschiana have been reported as the agents of a branch and twig dieback that overlaps with olive quick decline syndrome caused by Xylella fastidiosa subsp. pauca. In this study, we report the finding of Diplodia seriata, another Botryosphaeriaceae species, in Salento in Xylella fastidiosa-infected olive trees affected by symptoms of branch and twig dieback. Given that its presence was also reported in olive in the Americas and in Europe (Croatia) with different degrees of virulence, we were prompted to assess its role in the Apulian decline. We identified representative isolates based on morphological features and a multilocus phylogeny. In vitro tests showed that the optimum growth temperature of the isolates is around 25–30 °C, and that they are highly thermotolerant. In pathogenicity trials conducted over eleven months, D. seriata expressed a very low virulence. Nonetheless, when we imposed severe water stress before the inoculation, D. seriata significatively necrotized bark and wood in a time frame of 35 days. Moreover, the symptoms which resulted were much more severe in the trial performed in summer compared with that in autumn. In osmolyte-supplemented media with a water potential from −1 to −3 Mpa, the isolates increased or maintained their growth rate compared with non-supplemented media, and they also grew, albeit to a lesser extent, on media with a water potential as low as −7 Mpa. This suggests that olives with a low water potential, namely those subjected to drought, may offer a suitable environment for the fungus’ development. The analysis of the meteorological parameters, temperatures and rainfall, in Salento in the timeframe 1989–2023, showed that this area is subjected to a progressive increase of temperature and drought during the summer. Thus, overall, D. seriata has to be considered a contributor to the manifestation of branch and twig dieback of olive in Salento. Coherently with the spiral decline concept of trees, our results suggest that heat and drought act as predisposing/inciting factors facilitating D. seriata as a contributor. The fact that several adverse factors, biotic and abiotic, are simultaneously burdening olive trees in Salento offers a cue to discuss the possible complex nature of the olive decline in Salento
1H-NMR Metabolomics Study after Foliar and Endo-Therapy Treatments of Xylella fastidiosa subsp. pauca Infected Olive Trees: Medium Time Monitoring of Field Experiments
Here we report the medium-term effects of foliar spray and endo-therapy treatments with different doses of a Cu/Zn citric acid biocomplex (Dentamet®) in Xylella fastidiosa infected olive trees of Salento, Apulia region (South-east Italy). Leaf extract samples from field-treated 150 years old olive trees cvs Ogliarola salentina and Cellina di Nardò were studied by 1H NMR-based metabolomics. The result of different applications of Dentamet® endo-therapy after 60, 120 and 180 days in comparison with traditional foliar spray treatment and water injection as a control have been investigated. The metabolic profile analyses, performed by 1H NMR-based metabolomic approach, indicated plant metabolites variations connected to the disease progression such as mannitol, quinic acid, and oleuropein related compounds. The best results, in terms of discrimination of the metabolic profiles with respect to water injection, were found for monthly endo-therapy treatments. Dentamet® foliar application demonstrated more specific time related progressive effectiveness with respect to intravascular treatments. Therefore, besides a possible more effective performance of endo-therapy with respect to foliar treatments, the need of further doses/frequencies trimming to obtain longterm results was also assessed. The present field studies confirmed the indication of Dentamet® effectiveness in metabolic variation induction, potentially linked with reducing the X. fastidiosa subspecies pauca related Olive Quick Decline Syndrome (OQDS) symptoms development
Identification and characterization of Neofusicoccum stellenboschiana in branch and twig dieback-affected olive trees in Italy and comparative pathogenicity with N. mediterraneum
For about a decade, olive groves in Apulia (Southern Italy) have been progressively destroyed by Olive Quick Decline Syndrome (OQDS), a disease caused by the bacterium Xylella fastidiosa subsp. pauca (Xfp). Recently, we described an additional wilting syndrome affecting olive trees in that area. The botryosphaeriaceous fungus Neofusicoccum mediterraneum was found associated with the diseased trees, and its high virulence toward olive trees was demonstrated. Given the common features with Branch and Twig Dieback (BTD) of olive tree, occurring in Spain and California, we suggested that the observed syndrome was BTD. During our first survey, we also found a botryosphaeriaceous species other than N. mediterraneum. In the present article, we report the morphological and molecular
characterization of this fungal species which we identified as Neofusicoccum stellenboschiana. In the study, we also included for comparison additional N. stellenboschiana isolates obtained from olive trees in Latium and Tuscany region (Central Italy). The occurrence of N. stellenboschiana in olive trees is reported here for the first time in the northern hemisphere. The pathogenicity and virulence were tested in nine inoculation trials, where the Apulian N. stellenboschiana isolate was compared with the isolate from Latium and with the Apulian isolate of N. mediterraneum. Both isolates of N. stellenboschiana proved pathogenic to olive trees. They caused evident bark canker and wood discolouration when inoculated at the base of the stem of two/three-year-old trees and on one-year-old twigs. However, virulence of N. stellenboschiana was significantly lower, though still remarkable, compared with N. mediterraneum in term of necrosis rogression in the bark and the wood and capacity of wilting the twigs. Virulence of N. stellenboschiana and N. mediterraneum did not substantially change when noculations were performed in spring/summer and in autumn, suggesting that these fungal species have the potential to infect and damage olive trees in all seasons. The high thermotolerance of N. stellenboschiana was also revealed with in vitro growth and survival tests. The high virulence of these otryosphaeriaceae species highlights their contribution in BTD aetiology and the necessity to investigate right away their diffusion and, possibly, the role of additional factors other than Xfp in the general decline of olive groves in Apulia. Hence the importance of assessing the degree of overlap of BTD/Botryosphariaceae with OQDS/Xfp is discussed
Assessment of Fatty Acid and Oxylipin Profile of Resprouting Olive Trees Positive to Xylella fastidiosa subsp. pauca in Salento (Apulia, Italy)
Xylella fastidiosa subsp. pauca ST53 (XFP), the causal agent of olive quick decline syndrome (OQDS), was thoroughly investigated after a 2013 outbreak in the Salento region of Southern Italy. Some trees from Ogliarola Salentina and Cellina di Nardò, susceptible cultivars in the Gallipoli area, the first XFP infection hotspot in Italy, have resprouted crowns and are starting to flower and yield fruits. Satellite imagery and Normalized Difference Vegetation Index analyses revealed a significant improvement in vegetation health and productivity from 2018 to 2022 of these trees. Lipid molecules have long been recognized as plant defense modulators, and recently, we investigated their role in XFP-positive hosts and in XFP-resistant as well as in XFP-susceptible cultivars of olive trees. Here, we present a case study regarding 36 olive trees (12 XFP-positive resprouting, 12 XFP-positive OQDS-symptomatic, and 12 XFP-negative trees) harvested in 2022 within the area where XFP struck first, killing millions of trees in a decade. These trees were analyzed for some free fatty acid, oxylipin, and plant hormones, in particular jasmonic and salicylic acid, by targeted LC-MS/MS. Multivariate analysis revealed that lipid markers of resistance (e.g., 13-HpOTrE), along with jasmonic and salicylic acid, were accumulated differently in the XFP-positive resprouting trees from both cultivars with respect to XFP-positive OQDS symptomatic and XFP-negative trees, suggesting a correlation of lipid metabolism with the resprouting, which can be an indication of the resiliency of these trees to OQDS. This is the first report concerning the resprouting of OQDS-infected olive trees in the Salento area
Net blotch (Pyrenophora teres Drechsler): An increasingly significant threat to barley production
Pyrenophora teres is a pathogen causing a net blotch disease in cultivated barley, which is present worldwide
and can thus significantly reduce barley yields. This fungus also infects wild barley and other plants of the Hordeum
genus, as well as barley grass, wheat, oats and plants from various genera, including Agropyron, Bromus, Elymus, Hordelymus and Stipa. Based on the symptoms it causes on the infected barley plants, the pathogen can be divided into two
forms: P. teres f. teres, which causes net-like symptoms, and P. teres f. maculata, which causes blotchy symptoms. Infected seeds, stubble and plant debris, and volunteer and weed plants represent primary sources of pathogen inoculum.
During the growing season, the pathogen enters a sexual stage, developing pseudothecia with asci and ascospores. This
is followed by an asexual stage, during which conidiophores with conidia are formed. The conidial (anamorphic) stage is
much more common, whereby conidia is a source of inoculum for secondary infection during the barley growing season.
The first symptoms appear at the end of winter and the beginning of spring, often during the tilling phase. The most
characteristic symptoms form on barley leaves. Frequently, symptoms of the net form can be mistaken for other diseases
occurring on barley, making molecular analysis essential for accurate detection of P. teres, its forms, mating types and
hybrids. Current net blotch control measures are based on the combined application of cultural, chemical and biological
control methods and the selection of resistant varieties
In-Depth Characterization of Crown Gall Disease of Tobacco in Serbia
In August 2020, the unusual appearance of crown gall symptoms was observed on the
tobacco plants (hybrid PVH2310) grown in fields in the Golubinci (Srem district, Serbia) locality. The
causal agent isolated from galls located on tobacco roots formed circular, convex, and glistening
light blue colonies, and then dark to olive-green-colored bacterial colonies on a semi-selective D1
medium. Molecular analysis based on multiplex PCR and multi-locus sequence analysis (MLSA)
using concatenated sequences of the atpD, dnaK, glnA, and rpoB genes as well as 16S rRNA identified
Serbian tobacco isolates such as Agrobacterium tumefaciens (biovar 1). Two duplex PCR methods
confirmed the presence of the virD2 and virC genes in tobacco isolates. Pathogenicity tests performed
on carrot discs and squash fruits resulted in tumor/gall formation after 12 to 16 days post inoculation,
respectively. Pathogenicity was also confirmed on tobacco plants, where isolates caused tumor
development 21−25 days after inoculation. API 50 CH generated results regarding the biochemical
features of the Serbian tobacco isolates. As A. tumefaciens (biovar 1) as a cause of tobacco crown gall
has previously been documented solely in Japan, there is presently no data on its wider occurrence.
Therefore, this first detailed investigation of A. tumefaciens isolated from naturally infected tobacco in
Serbia will contribute to a better understanding of it at the global level
- …
