11 research outputs found

    Application of a Loop-Mediated Isothermal Amplification (LAMP) Assay for the Detection of <i>Listeria monocytogenes</i> in Cooked Ham

    No full text
    Changing eating habits and rising demand of food have increased the incidence of foodborne diseases, particularly in industrialized countries. In this context, contaminated ready-to-eat food (RTE) may be a vehicle for the transmission of Listeria monocytogenes (L. monocytogenes), a foodborne pathogen responsible of listeriosis, a severe infectious disease involving humans and animals. It would be useful to have rapid detection methods to screen the presence of L. monocytogenes in food. In this study, a colorimetric Loop-mediated isothermal amplification (LAMP) assay was applied to the detection of L. monocytogenes in 37 experimentally contaminated RTE meat samples. The LAMP primers consisted of a set of six primers targeting eight regions on the hlyA gene; the assay was carried out in 30 min at 65 °C in a water bath. Amplification products were visualized by color change assessment. The results of colorimetric LAMP assays based on the hly gene obtained in this study were compared to microbiological cultural methods, real-time PCR and real-time LAMP PCR, which show 100% specificity and sensitivity. These data suggest that colorimetric LAMP assays can be used as a screen to detect L. monocytogenes in ready-to-eat meat food

    Dissemination and persistence of Pseudomonas spp. in small-scale dairy farms

    Get PDF
    This study was aimed at collecting data on presence, dissemination and persistence of Pseudomonas in small-scale dairy farms. Six farms (located in Piedmont) were visited three times over 2014: 116 waters (wells and different faucets/pipes) and 117 environmental samples (milking equipments and drains) were collected. Enumeration of Pseudomonadaceae was performed, 3-5 colonies/samples were selected for identification via 16SrDNA/oprI polymerase chain reaction (PCR), and typed by enterobacterial-repetitive- intergenic-consensus (ERIC)-PCR. Pseudomonadaceae were detected in 77% of samples. No statistical differences were found among proportions of positives across farms, sample typologies and seasons. Most isolates were Pseudomonas fluorescens (45%), and ERIC-PCR showed 32 persistent types diffused across farms. All in all, Pseudomonas spp. represents a challenge, considering its presence over time in water as well as in teat cups, indicating a continuous source of contamination. Moreover, persistency of strains may indicate biofilm-formation and/or sanitisers resistance, therefore emphasising the role of primary production for preventing milk contamination by Pseudomonas spp
    corecore