45 research outputs found

    Explicit Reference Governor for Continuous Time Nonlinear Systems Subject to Convex Constraints

    Full text link
    This paper introduces a novel closed-form strategy that dynamically modifies the reference of a pre-compensated nonlinear system to ensure the satisfaction of a set of convex constraints. The main idea consists of translating constraints in the state space into constraints on the Lyapunov function and then modulating the reference velocity so as to limit the value of the Lyapunov function. The theory is introduced for general nonlinear systems subject to convex constraints. In the case of polyhedric constraints, an explicit solution is provided for the large and highly relevant class of nonlinear systems whose Lyapunov function is lower-bounded by a quadratic form. In view of improving performances, further specializations are provided for the relevant cases of linear systems and robotic manipulators.Comment: Submitted to: IEEE Transactions on Automatic Contro

    Finite-Time Computation of Polyhedral Input-Saturated Output-Admissible Sets

    Full text link
    The paper introduces a novel algorithm for computing the output admissible set of linear discrete-time systems subject to input saturation. The proposed method takes advantage of the piecewise-affine dynamics to propagate the output constraints within the non-saturated and saturated regions. The constraints are then shared between regions to ensure a proper transition from one region to another. The resulting algorithm generates a set that is proven to be polyhedral, safe, positively invariant, and finitely determined. Moreover, the set is also proven to be strictly larger than the maximal output admissible set that would be obtained by treating input saturation as a constraint.Comment: Submitted to IEEE Transactions on Automatic Contro

    How to solve Quantum Optimal Control Problems using Projection Operator-based Newton Steps

    Full text link
    The Quantum PRojection Operator-based Newton method for Trajectory Optimization, a.k.a. Q-PRONTO, is a numerical method for solving quantum optimal control problems. This paper significantly improves prior versions of the quantum projection operator by introducing a regulator that stabilizes the solution estimate at every iteration. This modification is shown to not only improve the convergence rate of the algorithm, but also steer the solver towards better local minima compared to the un-regulated case. Numerical examples showcase Q-PRONTO can be used to solve multi-input quantum optimal control problems featuring time-varying costs and undesirable populations that ought to be avoided during the transient.Comment: 10 pages, 9 figure

    Attitude Trajectory Optimization and Momentum Conservation with Control Moment Gyroscopes

    Full text link
    In this work, we develop a numerically tractable trajectory optimization problem for rest-to-rest attitude transfers with CMG-driven spacecraft. First, we adapt a specialized dynamical model which avoids many of the numerical challenges (singularities) introduced by common dynamical approximations. To formulate and solve our specialized trajectory optimization problem, we design a locally stabilizing Linear Quadratic (LQ) regulator on the system's configuration manifold then lift it into the ambient state space to produce suitable terminal and running LQ cost functionals. Finally, we examine the performance benefits and drawbacks of solutions to this optimization problem via the PRONTO solver and find significant improvements in maneuver time, terminal state accuracy, and total control effort. This analysis also highlights a critical shortcoming for objective functions which penalize only the norm of the control input rather than electrical power usage.Comment: 8 pages, 6 figures, IFAC 2023 conference submissio

    A Feasibility Governor for Enlarging the Region of Attraction of Linear Model Predictive Controllers

    Full text link
    This paper proposes a method for enlarging the region of attraction of Linear Model Predictive Controllers (MPC) when tracking piecewise-constant references in the presence of pointwise-in-time constraints. It consists of an add-on unit, the Feasibility Governor (FG), that manipulates the reference command so as to ensure that the optimal control problem that underlies the MPC feedback law remains feasible. Offline polyhedral projection algorithms based on multi-objective linear programming are employed to compute the set of feasible states and reference commands. Online, the action of the FG is computed by solving a convex quadratic program. The closed-loop system is shown to satisfy constraints, be asymptotically stable, exhibit zero-offset tracking, and display finite-time convergence of the reference

    A Machine-Designed Optical Lattice Atom Interferometer

    Full text link
    Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We demonstrate such an interferometer in a one dimensional lattice and show the ability to control the atoms by imaging and reconstructing the wavefunction at many stages during its cycle. An acceleration signal is applied and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will have a wide range of potential applications
    corecore