27 research outputs found
Energy and Economic Analysis of a New Low-Temperature Distillation Process for the Upgrading of High-CO2 Content Natural Gas Streams
Numerical–Experimental Analysis to Optimize the Geometry of a Prosthetic Abutment
This paper aims to identify methods for optimizing the geometry of dental prosthesis preparation, through both an analytical study and a numerical investigation. Assuming a 10° inclined load with respect to the median sagittal plane, a double algorithm was developed that was capable of calculating the axial resistance area and the cusp resistance area (if present) of a prosthetic abutment as the main geometric parameters vary. In particular, a coupling model with a pseudo-elliptical base was proposed, which is better than the circular shape representing the real shape assumed by the abutment following the dental intervention. The model also allows the presence of a cusp. This model was first analyzed using FEA, also simulating the presence of coupling cement between the abutment and the crown, and then physically made with a 10:1 scale prototype. The convergence of the experimental results found with the numerical–theoretical studies is an indication of the validity of the proposed model. A key contribution of this research using the proposed algorithm allowed to demonstrate that a superior limit of 0.25 for the ratio (HR) between the heights of the cusp sulcus (h-hc) and the abutment (h) is required to achieve good stability of the coupling. The methodology developed in this study is applicable to a variety of teeth, making it versatile and highly adaptable for broader clinical applications
Structural Analysis and Redrawing of a Sailing Catamaran with a Numerical and Experimental Approach
This study investigates the structural behavior of a sailing catamaran subjected to wind, wave, and self-weight loads, with the ultimate goal of improving the structural design through redrawing techniques. A digital model was developed using Creo software 6 and analyzed through Finite Element Analysis (FEA), complemented by experimental deformation tests conducted under dry conditions and controlled loading. These tests provided a reliable dataset for calibrating and validating the numerical model. The analysis focused on the structural responses of key components—such as bulkheads, hulls, and beam-to-hull connections—under both isolated as well as combined load scenarios. Most structural elements demonstrated low deformation, confirming the robustness of the design; however, stress concentrations were observed at the connecting plates, highlighting areas for improvement. The vessel’s overall stiffness, though advantageous for structural integrity, was identified as a constraint in weight redrawing efforts. Consequently, targeted structural modifications were proposed and implemented, resulting in reduced material usage, construction time, and overall costs. The study concludes by proposing the integration of advanced composite materials to further enhance performance and efficiency, thereby laying the groundwork for future integration with digital and structural health monitoring systems
Comparison between 3D-reconstruction optical methods applied to bulge-tests through a feed-forward neural network
The mechanical behaviour of rubber-like materials can be investigated through numerous techniques that differ from each other in costs, execution times and parameters described. Bulge test method proved helpful for hyperelastic membranes under plane and equibiaxial stress state. In the present study, bulge tests in force control were carried out on SBR 20% CB-filled specimens. 3D reconstructions of the dome were achieved through two different stereoscopic techniques, the epipolar geometry and the Digital Image Correlation. Through a Feed-Forward Neural Network (FFNN), these reconstructions were compared with the measurements by a laser triangulation sensor taken as reference. 3D-DIC reconstruction was found to be more accurate. Indeed, bias errors of the 3D-DIC and epipolar techniques with respect to the relative reference values, under creep condition, were 0.53 mm and 0.87 mm, respectively.<br /><br /></jats:p
Design and Performance Evaluation of a “Fixed-Point” Spar Buoy Equipped with a Piezoelectric Energy Harvesting Unit for Floating Near-Shore Applications
In the present work, a spar-buoy scaled model was designed and built through a “Lab-on-Sea” unit, equipped with an energy harvesting system. Such a system is based on deformable bands, which are loyal to the unit, to convert wave motion energy into electricity by means of piezo patch transducers. In a preliminary stage, the scaled model, suitable for tests in a controlled ripples-type wave motion channel, was tested in order to verify the “fixed-point” assumption in pitch and roll motions and, consequently, to optimize energy harvesting. A special type of structure was designed, numerically simulated, and experimentally verified. The proposed solution represents an advantageous compromise between the lightness of the used materials and the amount of recoverable energy. The energy, which was obtained from the piezo patch transducers during the simulations in the laboratory, was found to be enough to self-sustain the feasible on-board sensors and the remote data transmission system.</jats:p
Metronomic oral vinorelbine in patients with advanced non-small cell lung cancer progressing after nivolumab immunotherapy: a retrospective analysis
The availability of immune checkpoint inhibitors has deeply changed the therapeutic scenario of patients with advanced non-small cell lung cancer (NSCLC). Up until now, chemotherapy still represents the first-line treatment for patients with advanced NSCLC not harbouring genetic mutations or lacking high expression of programmed death ligand even if the addition of immunotherapy to first-line chemotherapy has recently been shown to improve clinical outcome. We carried out a multi-institutional retrospective analysis on third-line chemotherapy with metronomic oral vinorelbine (VNR) in a series of patients with metastatic NSCLC pre-treated with first-line chemotherapy and second-line immunotherapy
Light absorption in silicon quantum dots embedded in silica
The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient and a lower optical bandgap (∼2.0 eV) in comparison with that of PECVD samples, due to the lower density of Si-Si bonds and to the presence of nitrogen in PECVD materials. By increasing the Si content a reduction in the optical bandgap has been recorded, pointing out the role of Si-Si bonds density in the absorption process in small amorphous Si QDs. Both the photon absorption probability and energy threshold in amorphous Si QDs are higher than in bulk amorphous Si, evidencing a quantum confinement effect. For temperatures higher than 900 °C both the materials show an increase in the optical bandgap due to the amorphous-crystalline transition of the Si QDs. Fixed the SRO stoichiometry, no difference in the optical bandgap trend of multilayer or single layer structures is evidenced. These data can be profitably used to better implement Si QDs for future PV technologies. © 2009 American Institute of Physics
