174 research outputs found

    Mixing sets linked by bidirected paths

    Get PDF
    Recently there has been considerable research on simple mixed-integer sets, called mixing sets, and closely related sets arising in uncapacitated and constant capacity lot- sizing. This in turn has led to study of more general sets, called network-dual sets, for which it is possible to derive extended formulations whose projection gives the convex hull of the network-dual set. Unfortunately this formulation cannot be used (in general) to optimize in polynomial time. Furthermore the inequalities definining the convex hull of a network-dual set in the original space of variables are known only for some special cases. Here we study two new cases, in which the continuous variables of the network-dual set are linked by a bi- directed path. In the first case, which is motivated by lot-sizing problems with (lost) sales, we provide a description of the convex hull as the intersection of the convex hulls of 2^n mixing sets, where n is the number of continuous variables of the set. However optimization is polynomial as only n + 1 of the sets are required for any given objective function. In the second case, generalizing single arc flow sets, we describe again the convex hull as an intersection of an exponential number of mixing sets and also give a combinatorial polynomial-time separation algorithm.mixing sets, extended formulations, mixed integer programming, lot-sizing with sales

    Lot-sizing with stock upper bounds and fixed charges

    Get PDF
    Here we study the discrete lot-sizing problem with an initial stock variable and an associated variable upper bound constraint. This problem is of interest in its own right, and is also a natural relaxation of the constant capacity lot-sizing problem with upper bounds and fixed charges on the stock variables. We show that the convex hull of solutions of the discrete lot-sizing problem is obtained as the intersection of two simpler sets, one involving just 0-1 variables and the second a mixing set with a variable upper bound constraint. For these two sets we derive both inequality descriptions and polynomial-size extended formulations of their respective convex hulls. Finally we carry out some limited computational tests on single-item constant capacity lot-sizing problems with upper bounds and fixed charges on the stock variables in which we use the extended formulations derived above to strengthen the initial mixed integer programming formulations.mixed integer programming, discrete lot-sizing, stock fixed costs, mixing sets

    On largest volume simplices and sub-determinants

    Full text link
    We show that the problem of finding the simplex of largest volume in the convex hull of nn points in Qd\mathbb{Q}^d can be approximated with a factor of O(log⁡d)d/2O(\log d)^{d/2} in polynomial time. This improves upon the previously best known approximation guarantee of d(d−1)/2d^{(d-1)/2} by Khachiyan. On the other hand, we show that there exists a constant c>1c>1 such that this problem cannot be approximated with a factor of cdc^d, unless P=NPP=NP. % This improves over the 1.091.09 inapproximability that was previously known. Our hardness result holds even if n=O(d)n = O(d), in which case there exists a \bar c\,^{d}-approximation algorithm that relies on recent sampling techniques, where cˉ\bar c is again a constant. We show that similar results hold for the problem of finding the largest absolute value of a subdeterminant of a d×nd\times n matrix

    On the convergence of the affine hull of the Chv\'atal-Gomory closures

    Full text link
    Given an integral polyhedron P and a rational polyhedron Q living in the same n-dimensional space and containing the same integer points as P, we investigate how many iterations of the Chv\'atal-Gomory closure operator have to be performed on Q to obtain a polyhedron contained in the affine hull of P. We show that if P contains an integer point in its relative interior, then such a number of iterations can be bounded by a function depending only on n. On the other hand, we prove that if P is not full-dimensional and does not contain any integer point in its relative interior, then no finite bound on the number of iterations exists.Comment: 13 pages, 2 figures - the introduction has been extended and an extra chapter has been adde

    The role of rationality in integer-programming relaxations

    Get PDF
    For a finite set X⊂Zd that can be represented as X=Q∩Zd for some polyhedron Q, we call Q a relaxation of X and define the relaxation complexity rc(X) of X as the least number of facets among all possible relaxations Q of X. The rational relaxation complexity rcQ(X) restricts the definition of rc(X) to rational polyhedra Q. In this article, we focus on X=Δd, the vertex set of the standard simplex, which consists of the null vector and the standard unit vectors in Rd. We show that rc(Δd)≀d for every d≄5. That is, since rcQ(Δd)=d+1, irrationality can reduce the minimal size of relaxations. This answers an open question posed by Kaibel and Weltge (Math Program 154(1):407–425, 2015). Moreover, we prove the asymptotic statement rc(Δd)∈O(dlog(d)√/), which shows that the ratio rc(Δd)rcQ(Δd)/ goes to 0, as d→∞

    Towards Lower Bounds on the Depth of ReLU Neural Networks

    Get PDF
    We contribute to a better understanding of the class of functions that is represented by a neural network with ReLU activations and a given architecture. Using techniques from mixed-integer optimization, polyhedral theory, and tropical geometry, we provide a mathematical counterbalance to the universal approximation theorems which suggest that a single hidden layer is sufficient for learning tasks. In particular, we investigate whether the class of exactly representable functions strictly increases by adding more layers (with no restrictions on size). This problem has potential impact on algorithmic and statistical aspects because of the insight it provides into the class of functions represented by neural hypothesis classes. However, to the best of our knowledge, this question has not been investigated in the neural network literature. We also present upper bounds on the sizes of neural networks required to represent functions in these neural hypothesis classes.Comment: Camera-ready version for NeurIPS 2021 conferenc

    Scanning integer points with lex-inequalities: A finite cutting plane algorithm for integer programming with linear objective

    Full text link
    We consider the integer points in a unimodular cone K ordered by a lexicographic rule defined by a lattice basis. To each integer point x in K we associate a family of inequalities (lex-cuts) that defines the convex hull of the integer points in K that are not lexicographically smaller than x. The family of lex-cuts contains the Chvatal-Gomory cuts, but does not contain and is not contained in the family of split cuts. This provides a finite cutting plane method to solve the integer program min{cx : x \in S \cap Z^n }, where S \subset R^n is a compact set and c \in Z^n . We analyze the number of iterations of our algorithm.Comment: 16 pages, 1 figur
    • 

    corecore