51 research outputs found

    Pervasive Eclogitization Due to Brittle Deformation and Rehydration of Subducted Basement: Effects on Continental Recycling?

    Get PDF
    The buoyancy of continental crust opposes its subduction to mantle depths, except where mineral reactions substantially increase rock density. Sluggish kinetics limit such densification, especially in dry rocks, unless deformation and hydrous fluids intervene. Here we document how hydrous fluids in the subduction channel invaded lower crustal granulites at 50–60 km depth through a dense network of probably seismically induced fractures. We combine analyses of textures and mineral composition with thermodynamic modeling to reconstruct repeated stages of interaction, with pulses of high‐pressure (HP) fluid at 650–670°C, rehydrating the initially dry rocks to micaschists. SIMS oxygen isotopic data of quartz indicate fluids of crustal composition. HP growth rims in allanite and zircon show uniform U‐Th‐Pb ages of ∼65 Ma and indicate that hydration occurred during subduction, at eclogite facies conditions. Based on this case study in the Sesia Zone (Western Italian Alps), we conclude that continental crust, and in particular deep basement fragments, during subduction can behave as substantial fluid sinks, not sources. Density modeling indicates a bifurcation in continental recycling: Chiefly mafic crust, once it is eclogitized to >60%, are prone to end up in a subduction graveyard, such as is tomographically evident beneath the Alps at ∼550 km depth. By contrast, dominantly felsic HP fragments and mafic granulites remain positively buoyant and tend be incorporated into an orogen and be exhumed with it. Felsic and intermediate lithotypes remain positively buoyant even where deformation and fluid percolation allowed them to equilibrate at HP

    Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes

    Get PDF
    Serpentinization of ultramafic rocks during hydrothermal alteration at mid-ocean ridges profoundly changes the physical, chemical, rheological, and magnetic properties of the oceanic lithosphere. There is renewed interest in this process following the discovery of widespread exposures of serpentinized mantle on the seafloor in slow spreading oceans. Unroofing of mantle rocks in these settings is achieved by displacement along oceanic detachment faults, which eventually results in structures known as oceanic core complexes (OCCs). However, we have limited understanding of the mechanisms of serpentinization at the seafloor and in particular their relationship with the evolution of OCCs. Since magnetite is a direct product of serpentinization, the magnetic properties of variably serpentinized peridotites can provide unique insights into these mechanisms and their evolution in the oceanic lithosphere. Here we present new results from an integrated, rock magnetic, paleomagnetic, and petrological study of variably serpentinized peridotites from the first fossil OCC recognized in an ophiolite. Integration with existing data from mid-ocean ridge-related abyssal peridotites recovered from several scientific ocean drilling sites yields the first magnetic database from peridotites extending across the complete range (0–100%) of degrees of serpentinization. Variations in a range of magnetic parameters with serpentinization, and associated paleomagnetic data, provide: (i) key constraints on the mechanism(s) of serpentinization at mid-ocean ridges; (ii) insights on the potential for serpentinized peridotites to contribute to marine magnetic anomalies; and (iii) evidence that leads to a new conceptual model for the evolution of serpentinization and related remanence acquisition at OCCs
    corecore