315 research outputs found
The use of Open Reading frame ESTs (ORESTES) for analysis of the honey bee transcriptome
BACKGROUND: The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES) strategy to generate profiles for the life cycle of Apis mellifera workers. RESULTS: Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41%) represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria), and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52%) did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22%) should represent Apis-specific genes. CONCLUSIONS: The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes
Identification of unannotated exons of low abundance transcripts in Drosophila melanogaster and cloning of a new serine protease gene upregulated upon injury
<p>Abstract</p> <p>Background</p> <p>The sequencing of the <it>D.melanogaster </it>genome revealed an unexpected small number of genes (~ 14,000) indicating that mechanisms acting on generation of transcript diversity must have played a major role in the evolution of complex metazoans. Among the most extensively used mechanisms that accounts for this diversity is alternative splicing. It is estimated that over 40% of <it>Drosophila </it>protein-coding genes contain one or more alternative exons. A recent transcription map of the <it>Drosophila </it>embryogenesis indicates that 30% of the transcribed regions are unannotated, and that 1/3 of this is estimated as missed or alternative exons of previously characterized protein-coding genes. Therefore, the identification of the variety of expressed transcripts depends on experimental data for its final validation and is continuously being performed using different approaches. We applied the Open Reading Frame Expressed Sequence Tags (ORESTES) methodology, which is capable of generating cDNA data from the central portion of rare transcripts, in order to investigate the presence of hitherto unnanotated regions of <it>Drosophila </it>transcriptome.</p> <p>Results</p> <p>Bioinformatic analysis of 1,303 <it>Drosophila </it>ORESTES clusters identified 68 sequences derived from unannotated regions in the current <it>Drosophila </it>genome version (4.3). Of these, a set of 38 was analysed by polyA<sup>+ </sup>northern blot hybridization, validating 17 (50%) new exons of low abundance transcripts. For one of these ESTs, we obtained the cDNA encompassing the complete coding sequence of a new serine protease, named SP212. The <it>SP212 </it>gene is part of a serine protease gene cluster located in the chromosome region 88A12-B1. This cluster includes the predicted genes CG9631, CG9649 and CG31326, which were previously identified as up-regulated after immune challenges in genomic-scale microarray analysis. In agreement with the proposal that this <it>locus </it>is co-regulated in response to microorganisms infection, we show here that SP212 is also up-regulated upon injury.</p> <p>Conclusion</p> <p>Using the ORESTES methodology we identified 17 novel exons from low abundance <it>Drosophila </it>transcripts, and through a PCR approach the complete CDS of one of these transcripts was defined. Our results show that the computational identification and manual inspection are not sufficient to annotate a genome in the absence of experimentally derived data.</p
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
A Precision Measurement of the Lambda_c Baryon Mass
The baryon mass is measured using and decays reconstructed in 232
fb of data collected with the BaBar detector at the PEP-II
asymmetric-energy storage ring. The mass is measured to
be . The dominant systematic uncertainties
arise from the amount of material in the tracking volume and from the magnetic
field strength.Comment: 14 pages, 8 postscript figures, submitted to Phys. Rev.
Recommended from our members
Measurement of the branching fraction ratios and CP asymmetries in B-→ D0 CP K-decays
We present a preliminary study of and decays, with the reconstructed in the CP-odd
eigenstates , , in the CP-even eigenstates ,
, and in the (non-CP) flavor eigenstate . Using a
sample of about 382 million Y(4S) decays into BBbar pairs, collected with the
BABAR detector operating at the PEP-II asymmetric-energy B Factory at SLAC, we
measure the ratios of the branching fractions R_CP+- and the direct CP
asymmetries A_CP+-. The results are:
R_CP- = 0.81 \pm 0.10 (stat) \pm 0.05 (syst)
R_CP+ = 1.07 \pm 0.10 (stat) \pm 0.04 (syst)
A_CP- = -0.19 \pm 0.12 (stat) \pm 0.02 (syst)
A_CP+ = 0.35 \pm 0.09 (stat) \pm 0.05 (syst
Observation of CP violation in B ->eta/K-0 decays
We present measurements of the time-dependent CP-violation parameters S and C in B-0 -> eta K-'(0) decays. The data sample corresponds to 384 x 10(6) B (B) over bar pairs produced by e(+)e(-) annihilation at the Upsilon(4S). The results are S = 0.58 +/- 0.10 +/- 0.03 and C = -0.16 +/- 0.07 +/- 0.03. We observe mixing-induced CP violation with a significance of 5.5 standard deviations in this b -> s penguin dominated mode
Measurement of branching fractions and resonance contributions for B-0 ->(D)over-bar(0)K(+)pi(-) and search for B-0 ->(DK+)-K-0 pi(-) decays
Using 226x10(6) Upsilon(4S)-> B (B) over bar events collected with the BABAR detector at the PEP-II e(+)e(-) storage ring at the Stanford Linear Accelerator Center, we measure the branching fraction for B-0->(D) over bar (0)K(+)pi(-), excluding B-0-> D*-K+, to be B(B-0->(0)K(+)pi(-))=(88 +/- 15 +/- 9)x10(-6). We observe B-0->(D) over bar K-0(*)(892)(0) and B-0-> D-2(*)(2460)K--(+) contributions. The ratio of branching fractions B(B-0-> D*-K+)/B(B-0-> D(*-)pi(+))=(7.76 +/- 0.34 +/- 0.29)% is measured separately. The branching fraction for the suppressed mode B-0-> D(0)K(+)pi(-) is B(B-0-> D(0)K(+)pi(-))< 19x10(-6) at the 90% confidence level
Measurement of the CP asymmetry and branching fraction of B-0 ->rho K-0(0)
We present a measurement of the branching fraction and time-dependent CP asymmetry of B-0 -> POKO. The results are obtained from a data sample of 227 x 10(6) Y(4S) -> BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at Stanford Linear Accelerator Center. From a time-dependent maximum likelihood fit yielding 111 +/- 19 signal events, we find B(B-0 -> rho K-0(0)) = (4.9 +/- 0.8 +/- 0.9) x 10(-6), where the first error is statistical and the second systematic. We report the measurement of the CP parameters S-rho 0KS0 = 0.20 +/- 0.52 +/- 0.24 and C-rho 0KS0 = 0.64 +/- 0.41 +/- 0.20
- …