531 research outputs found
Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal bread versus rice meals in healthy subjects: novel MRI insights
BACKGROUND/OBJECTIVES: Postprandial bloating is a common symptom in patients with functional gastrointestinal (GI) diseases. Whole meal bread (WMB) often aggravates such symptoms though the mechanisms are unclear. We used magnetic resonance imaging (MRI) to monitor the intragastric fate of a WMB meal (11% bran) compared to a rice pudding (RP) meal.
SUBJECTS/METHODS: 12 healthy volunteers completed this randomised crossover study. They fasted overnight and after an initial MRI scan consumed a glass of orange juice with a 2267 kJ WMB or an equicaloric RP meal. Subjects underwent serial MRI scans every 45 min up to 270 min to assess gastric volumes and small bowel water content and completed a GI symptom questionnaire.
RESULTS: The MRI intragastric appearance of the two meals was markedly different. The WMB meal formed a homogeneous dark bolus with brighter liquid signal surrounding it. The RP meal separated into an upper, liquid layer and a lower particulate layer allowing more rapid emptying of the liquid compared to solid phase (sieving). The WMB meal had longer gastric half emptying times (132±8 min) compared to the RP meal (104±7 min), P<0.008. The WMB meal was associated with markedly reduced MRI-visible small bowel free mobile water content compared to the RP meal, P<0.0001.
CONCLUSIONS: WMB bread forms a homogeneous bolus in the stomach which inhibits gastric sieving and hence empties slower than the equicaloric rice meal. These properties may explain why wheat causes postprandial bloating and could be exploited to design foods which prolong satiation
Virtual reality implementation as a useful software tool for e-health applications
Human hand and finger movements are of obvious
importance. The possibility of recording all fingers
joints movements during everyday life is then strategic
for medical diagnosis, surgery and post traumatic
rehabilitation. A proper presentation of recorded data
can be really useful for doctors and therapists to
correctly act in the occurrence of peripheral nerve
injury, rigidities, camptodactyly (decline in permanent
deformity of the interphalangeal junction), orthoses,
tenolisi, congenital malformations, trauma, dexterity
and/or muscular and/or articulate motility evaluations,
thumb atros, syndromes, use of mentors, spasm, use of
mechanical supports etc.. According to this context we
report a virtual reality implementation on the basis of
fingers movements recorded data, suitable for fingers
joints movement analysi
Flow in a slowly-tapering channel with oscillating walls
The flow of a fluid in a channel with walls inclined at an angle to each other is investigated at arbitrary Reynolds number. The flow is driven by an oscillatory motion of the wall incorporating a time-periodic displacement perpendicular to the channel centreline. The gap between the walls varies linearly with distance along the channel and is a prescribed periodic function of time. An approximate solution is constructed assuming that the angle of inclination of the walls is small. At leading order the flow corresponds to that in a channel with parallel, vertically oscillating walls examined by Hall and Papageorgiou \cite{HP}. A careful study of the governing partial differential system for the first order approximation controlling the tapering flow due to the wall inclination is conducted. It is found that as the Reynolds number is increased from zero the tapering flow loses symmetry and undergoes exponential growth in time. The loss of symmetry occurs at a lower Reynolds number than the symmetry-breaking for the parallel-wall flow. A window of asymmetric, time-periodic solutions is found at higher Reynolds number, and these are reached via a quasiperiodic transient from a given set of initial conditions. Beyond this window stability is again lost to exponentially growing solutions as the Reynolds number is increased
Comparison of two different classifiers for mental tasks-based Brain-Computer Interface: MLP Neural Networks vs. Fuzzy Logic
This study is devoted to the classification of fourclass
mental tasks data for a Brain-Computer Interface
protocol. In such view we adopted Multi Layer
Perceptron Neural Network (MLP) and Fuzzy C-means analysis for classifying: left and right hand movement imagination, mental subtraction operation and mental recitation of a nursery rhyme.
Five subjects participated to the experiment in two sessions recorded in distinct days. Different parameters were considered for the evaluation of the performances of the two classifiers: accuracy, that is, percentage of correct classifications, training time and size of the training dataset. The results show that even if the accuracies of the two classifiers are quite similar, the MLP classifier needs a smaller training set to reach them with respect to the Fuzzy one. This leads to the preference of MLP for the classification of
mental tasks in Brain Computer Interface protocols
Virtual reality implementation as a useful software tool for e-health applications
Human hand and finger movements are of obvious importance. The possibility of recording all fingers joints movements during everyday life is then strategic for medical diagnosis, surgery and post traumatic rehabilitation. A proper presentation of recorded data can be really useful for doctors and therapists to correctly act in the occurrence of peripheral nerve injury, rigidities, camptodactyly (decline in permanent deformity of the interphalangeal junction), orthoses, tenolisi, congenital malformations, trauma, dexterity and/or muscular and/or articulate motility evaluations, thumb atros, syndromes, use of mentors, spasm, use of mechanical supports etc.. According to this context we report a virtual reality implementation on the basis of fingers movements recorded data, suitable for fingers joints movement analysi
Magnetic resonance imaging quantification of fasted state colonic liquid pockets in healthy humans
The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent on the volume of liquid in the gastrointestinal tract (GIT). However, little is known about the time course of GIT liquid volumes after drinking a glass of water (8 oz), particularly in the colon, which is a targeted site for both locally and systemically acting drug products. Previous magnetic resonance imaging (MRI) studies offered novel insights on GIT liquid distribution in fasted humans in the stomach and small intestine, and showed that freely mobile liquid in the intestine collects in fairly distinct regions or “pockets”. Based on this previous pilot data, we hypothesized that (1) it is possible to quantify the time course of the volume and number of liquid pockets in the undisturbed colon of fasted healthy humans following ingestion of 240 mL, using noninvasive MRI methods; (2) the amount of freely mobile water in the fasted human colon is of the order of only a few milliliters. Twelve healthy volunteers fasted overnight and underwent fasted abdominal MRI scans before drinking 240 mL (∼8 fluid ounces) of water. After ingesting the water they were scanned at frequent intervals for 2 h. The images were processed to quantify freely mobile water in the total and regional colon: ascending, transverse, and descending. The fasted colon contained (mean ± SEM) 11 ± 5 pockets of resting liquid with a total volume of 2 ± 1 mL (average). The colonic fluid peaked at 7 ± 4 mL 30 min after the water drink. This peak fluid was distributed in 17 ± 7 separate liquid pockets in the colon. The regional analysis showed that pockets of free fluid were found primarily in the ascending colon. The interindividual variability was very high; the subjects showed a range of number of colonic fluid pockets from 0 to 89 and total colonic freely mobile fluid volume from 0 to 49 mL. This is the first study measuring the time course of the number, regional location, and volume of pockets of freely mobile liquid in the undisturbed colon of fasted humans after ingestion of a glass of water. Novel insights into the colonic fluid environment will be particularly relevant to improve our understanding and design of the in vivo performance of controlled release formulations targeted to the colon. The in vivo quantitative information presented here can be input into physiologically based mechanistic models of dissolution and absorption, and can be used in the design and set up of novel in vitro performance tools predictive of the in vivo environment
The Role of the Mucus Barrier in Digestion
Mucus forms a protective layer across a variety of epithelial surfaces. In the gastrointestinal (GI) tract, the barrier has to permit the uptake of nutrients, while excluding potential hazards, such as pathogenic bacteria. In this short review article, we look at recent literature on the structure, location, and properties of the mammalian intestinal secreted mucins and the mucus layer they form over a wide range of length scales. In particular, we look at the structure of the gel-forming glycoprotein MUC2, the primary intestinal secreted mucin, and the influence this has on the properties of the mucus layer. We show that, even at the level of the protein backbone, MUC2 is highly heterogeneous and that this is reflected in the networks it forms. It is evident that a combination of charge and pore size determines what can diffuse through the layer to the underlying gut epithelium. This information is important for the targeted delivery of bioactive molecules, including nutrients and pharmaceuticals, and for understanding how GI health is maintained
Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome
Background & Aims: Poorly digested, fermentable carbohydrates may induce symptoms of irritable bowel syndrome (IBS), via unclear mechanisms. We performed a randomized trial with magnetic resonance imaging (MRI) analysis to investigate correlations between symptoms and changes in small and large bowel contents following oral challenge.
Methods: We performed a 3-period crossover study of 29 adult patients with IBS (based on Rome III criteria, with symptoms of abdominal pain or discomfort for at least 2 days/week) and reported bloating. In parallel we performed the same study of 29 healthy individuals (controls). Studies were performed in the United Kingdom from January 2013 through February 2015. On 3 separate occasions (at least 7 days apart), subjects were given a 500 ml drink containing 40 g of carbohydrate (glucose in the first period, fructose in the second, and inulin in the third, in a random order). Levels of breath hydrogen were measured and intestinal content was assessed by MRI before and at various time points after consumption of each drink. Symptoms were determined based on subjects’ responses to the Hospital Anxiety and Depression Scale questionnaire and the Patient Health Questionnaire-15. The primary endpoint was whether participants had a clinically important symptom response during the 300 minutes following consumption of the drink.
Results: More patients with IBS reached the pre-defined symptom threshold after intake of inulin (13/29) or fructose (11/29) than glucose (6/29). Symptoms peaked sooner after intake of fructose than inulin. Fructose increased small bowel water content in both patients and controls whereas inulin increased colonic volume and gas in both. Fructose and inulin increased breath hydrogen levels in both groups, compared to glucose; fructose produced an earlier increase than inulin. Controls had lower symptom scores during the period after drink consumption than patients with IBS, despite similar MRI parameters and breath hydrogen responses. In patients who reached the symptom threshold after inulin intake, peak symptom intensity correlated with peak colonic gas (r = 0.57; P<0.05). Changes in MRI features and peak breath hydrogen levels were similar in patients who did and did not reach symptom threshold.
Conclusions: Patients with IBS and healthy individuals without IBS (controls) have similar physiological responses following intake of fructose or inulin; patients more frequently report symptoms after inulin than controls. In patients with a response to inulin, symptoms relate to levels of intra-luminal gas, but peak gas levels do not differ significantly between responders, non-responders or controls. This indicates that colonic hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in patients with IBS. Clinicaltrials.gov no: NCT0177685
Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postpradial satiety
Fat is often included in common foods as an emulsion of dispersed oil droplets to enhance the organoleptic quality and stability. The intragastric acid stability of emulsified fat may impact on gastric emptying, satiety and plasma lipid absorption. The aim of the present study was to investigate whether, compared with an acid-unstable emulsion, an acid-stable fat emulsion would empty from the stomach more slowly, cause more rapid plasma lipid absorption and cause greater satiety. Eleven healthy male volunteers received on two separate occasions 500 ml of 15% (w/w) [13C]palmitate-enriched olive oil-in-water emulsion meals which were either stable or unstable in the acid gastric environment. MRI was used to measure gastric emptying and the intragastric oil fraction of the meals. Blood sampling was used to measure plasma lipids and visual analogue scales were used to assess satiety. The acid-unstable fat emulsion broke and rapidly layered in the stomach. Gastric emptying of meal volume was slower for the acid-stable fat emulsion (P,0·0001; two-way ANOVA). The rate of energy delivery of fat from the stomach to the duodenum was not different up to t ¼ 110 min. The acid-stable emulsion induced increased fullness (P,0·05), decreased hunger (P,0·0002), decreased appetite (P,0·0001) and increased the concentration of palmitic acid tracer in the chylomicron fraction (P,0·04). This shows that it is possible to delay gastric emptying and increase satiety by stabilising the intragastric distribution of fat emulsions against the gastric acid environment. This could have implications for the design of novel foods
- …