19 research outputs found

    Altered sensory projections in the chick hind limb following the early removal of motoneurons

    Full text link
    Chick sensory neurons grow to their correct targets in the hindlimb from the outset during normal development and following various experimental manipulations. This may result not because sensory neurons respond to specific limb-derived cues, but because they interact in some way with motoneurons which are responsive to such cues. To test this possibility, we removed the ventral part of the neural tube, which contains motoneurons and their precursors, at stages and later examined the pathways sensory neurons had taken within the limb. Muscle nerves generally were missing or were reduced in diameter beyond the extent expected simply from the absence of motoneuron axons. In many cases, cutaneous nerves were enlarged, presumably due to the addition of other sensory axons. This result suggests that, in the absence of motoneurons, sensory neurons that normally project to muscles are unable to do so and may instead project along cutaneous pathways. Sensory axons from different segments also crossed less extensively in the plexus region than they did in control embryos, suggesting that alterations in their trajectories may normally be facilitated by similar changes in motoneuron pathways. Thus, motoneurons greatly enhance sensory neuron growth to muscles and contribute significantly toward the achievement of the normal sensory projection pattern. Sensory axons may fasciculate with motoneuron axons, or motoneuron axons may provide an aligned substrate for sensory neurons to grow along. Alternatively, motoneuron axons may alter the environment, thereby making certain pathways in the limb permissive for sensory neuron growth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25960/1/0000026.pd

    The development of sensory projection patterns in embryonic chick hindlimb under experimental conditions

    Full text link
    In the chick, sensory neurons grow to their segmentally appropriate target sites in the hindlimb from the outset during normal development. To elucidate the underlying mechanisms, we performed various manipulations of the neural tube, including the neural crest, or of the hindlimb, before axonal outgrowth and assessed the resulting sensory projections using retrograde and anterograde HRP labeling and electrophysiological techniques. Previous experiments had shown that motoneurons are specified to project to their appropriate target muscles prior to axon outgrowth and that they respond to cues in the limb in order to grow to those targets (Lance-Jones and Landmesser, 1980a and Lance-Jones and Landmesser, 1980b) Lance-Jones and Landmesser, 1980b and Lance-Jones and Landmesser, 1981a. When several segments of neural tube and neural crest were deleted, sensory neurons in the remaining segments still projected along their correct pathways, as did motoneurons. In situations in which motoneurons grew to their correct targets from altered positions with respect to the limb (e.g., small neural tube reversals), sensory neurons also tended to project along the segmentally appropriate pathways both to skin and to muscle. In situations in which motoneurons were displaced greater distances from their normal point of entry into the limb and made wrong connections (e.g., large neural tube reversals, anterior-posterior limb reversals), sensory neurons also projected incorrectly. The patterns of sensory projections to muscles were, in each situation, generally similar to the motoneuron projections. These results are consistent with the possibility that sensory neurons, like motoneurons, are specified with respect to their peripheral connectivity. Alternatively, the results suggest that motoneurons may play a role in the process of pathway selection by sensory neurons.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25961/1/0000027.pd

    A Novel Closed-Head Model of Mild Traumatic Brain Injury Caused by Primary Overpressure Blast to the Cranium Produces Sustained Emotional Deficits in Mice

    Get PDF
    Emotional disorders are a common outcome from mild traumatic brain injury (TBI) in humans, but their pathophysiological basis is poorly understood. We have developed a mouse model of closed-head blast injury using an air pressure wave delivered to a small area on one side of the cranium, to create mild TBI. We found that 20-psi blasts in 3-month-old C57BL/6 male mice yielded no obvious behavioral or histological evidence of brain injury, while 25ā€“40ā€‰psi blasts produced transient anxiety in an open field arena but little histological evidence of brain damage. By contrast, 50ā€“60ā€‰psi blasts resulted in anxiety-like behavior in an open field arena that became more evident with time after blast. In additional behavioral tests conducted 2ā€“8ā€‰weeks after blast, 50ā€“60ā€‰psi mice also demonstrated increased acoustic startle, perseverance of learned fear, and enhanced contextual fear, as well as depression-like behavior and diminished prepulse inhibition. We found no evident cerebral pathology, but did observe scattered axonal degeneration in brain sections from 50 to 60ā€‰psi mice 3ā€“8ā€‰weeks after blast. Thus, the TBI caused by single 50ā€“60ā€‰psi blasts in mice exhibits the minimal neuronal loss coupled to ā€œdiffuseā€ axonal injury characteristic of human mild TBI. A reduction in the abundance of a subpopulation of excitatory projection neurons in basolateral amygdala enriched in Thy1 was, however, observed. The reported link of this neuronal population to fear suppression suggests their damage by mild TBI may contribute to the heightened anxiety and fearfulness observed after blast in our mice. Our overpressure air blast model of concussion in mice will enable further studies of the mechanisms underlying the diverse emotional deficits seen after mild TBI

    Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist

    No full text
    We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using two-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state. In the present study, we showed that SMM-189 boosts nuclear pCREB levels in microglia in several brain regions by 3 days after TBI, by using pCREB/CD68 double immunofluorescent labeling. Next, to better understand the basis of motor deficits and increased fearfulness after TBI, we used unbiased stereological methods to characterize neuronal loss in cortex, striatum, and basolateral amygdala (BLA) and assessed how neuronal loss was affected by SMM-189 treatment. Our stereological neuron counts revealed a 20% reduction in cortical and 30% reduction in striatal neurons bilaterally at 2-3 months post blast, with SMM-189 yielding about 50% rescue. Loss of BLA neurons was restricted to the blast side, with 33% of Thy1+ fear-suppressing pyramidal neurons and 47% of fear-suppressing parvalbuminergic (PARV) interneurons lost, and Thy1-negative fear-promoting pyramidal neurons not significantly affected. SMM-189 yielded 50-60% rescue of Thy1+ and PARV neuron loss in BLA. Thus, fearfulness after mild TBI may result from the loss of fear-suppressing neuron types in BLA, and SMM-189 may reduce fearfulness by their rescue. Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state. CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration

    Motor, Visual and Emotional Deficits in Mice after Closed-Head Mild Traumatic Brain Injury Are Alleviated by the Novel CB2 Inverse Agonist SMM-189

    No full text
    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50ā€“60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50ā€“60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI
    corecore