27 research outputs found

    The onset of bubble vibration

    Get PDF
    Ultrasound contrast agents are used in a diagnostic imaging technique called medical ultrasonography. In this technique, ultrasound is applied to visualize tissue in the human body. It is a popular imaging technique due to a number of advantages, it is (1) a real-time modality (routinely 20-30 frames/s or more), (2) inexpensive, equipment is installed worldwide, (3) portable, equipment can be taken to bedside, ambulance or private practice office, (4) safe, e.g. no ionising radiation is necessary and (5) widely applicable, provided that air (lungs) and bone are avoided, all soft tissue can be imaged

    Characterizing the subharmonic response of phospholipid-coated microbubbles for carotid imaging

    Get PDF
    The subharmonic vibration of BR14 (Bracco Research S.A., Geneva, Switzerland) contrast agent microbubbles is investigated within the preferable frequency range for carotid ultrasound imaging (8–12 MHz). The response of the bubbles was recorded optically with an ultra-fast recording camera (Brandaris 128) at three acoustic pressures (50, 100 and 120 kPa). The vibration of the microbubbles was measured as a function of the excitation frequency and its frequency content was determined. Among 390 recordings, 40% showed subharmonic oscillations. It was observed that for smaller microbubbles (diameter < 3 μm) the frequency of the maximum subharmonic response increases for increasing pressures (shell hardening) opposite to what has been reported for larger microbubbles (3 μm < diameter < 15 μm). These findings are well predicted by the model proposed by Marmottant et al. (2005) after including the dilatational shell viscosity of the microbubbles measured by Van der Meer et al. (2007), which indicates a marked shear-thinning behavior of the phospholipid shel

    Ultrasonic characterization of ultrasound contrast agents

    Get PDF
    The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at the subharmonic, ultraharmonic and higher harmonic frequencies. This harmonic energy is exploited for contrast enhanced imaging to discriminate the contrast agent from surrounding tissue. The amount of harmonic energy that the contrast agent bubbles generate depends on the bubble characteristics in combination with the ultrasound field applied. This paper summarizes different strategies to characterize the UCAs. These strategies can be divided into acoustic and optical methods, which focus on the linear or nonlinear responses of the contrast agent bubbles. In addition, the characteristics of individual bubbles can be determined or the bubbles can be examined when they are part of a population. Recently, especially optical methods have proven their value to study individual bubbles. This paper concludes by showing some examples of optically observed typical behavior of contrast bubbles in ultrasound fields

    Radial Modulation of Single Microbubbles

    No full text
    Radial modulation imaging is a new promising technique to improve contrast-enhanced ultrasound images. The method is based on dual-frequency insonation of contrast agent microbubbles. A low-frequency (LF) pulse is used to modulate the responses of the microbubbles to a high-frequency (HF) imaging pulse. Inverting the LF pulse induces amplitude and phase differences in the HF response of contrast agent microbubbles, which can be detected using Doppler techniques. Although the technique has been successfully implemented, no consensus persists on parameter choice and resulting effects. In a separate study, "compression-only" behavior of coated microbubbles was observed. Compression-only behavior could be beneficial for radial modulation imaging. This was investigated using high-speed camera recordings and simulations. We recorded the vibrations of 78 single microbubbles in a dual-frequency ultrasound field. The results showed that the LF pulse induced significant compression-only behavior, which for microbubble sizes below and at HF resonance resulted in high radial amplitude modulation. It, however, also appeared that, for radial modulation imaging, microbubble size is more important than resonance and compression-only effects

    Ultrasonic characterization of ultrasound contrast agents

    Get PDF
    The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at the subharmonic, ultraharmonic and higher harmonic frequencies. This harmonic energy is exploited for contrast enhanced imaging to discriminate the contrast agent from surrounding tissue. The amount of harmonic energy that the contrast agent bubbles generate depends on the bubble characteristics in combination with the ultrasound field applied. This paper summarizes different strategies to characterize the UCAs. These strategies can be divided into acoustic and optical methods, which focus on the linear or nonlinear responses of the contrast agent bubbles. In addition, the characteristics of individual bubbles can be determined or the bubbles can be examined when they are part of a population. Recently, especially optical methods have proven their value to study individual bubbles. This paper concludes by showing some examples of optically observed typical behavior of contrast bubbles in ultrasound fields
    corecore