524 research outputs found

    Molecular Implications of natriuretic peptides in the protection from hypertension and target organ damage development

    Get PDF
    The pathogenesis of hypertension, as a multifactorial trait, is complex. High blood pressure levels, in turn, concur with the development of cardiovascular damage. Abnormalities of several neurohormonal mechanisms controlling blood pressure homeostasis and cardiovascular remodeling can contribute to these pathological conditions. The natriuretic peptide (NP) family (including ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), and CNP (C-type natriuretic peptide)), the NP receptors (NPRA, NPRB, and NPRC), and the related protease convertases (furin, corin, and PCSK6) constitute the NP system and represent relevant protective mechanisms toward the development of hypertension and associated conditions, such as atherosclerosis, stroke, myocardial infarction, heart failure, and renal injury. Initially, several experimental studies performed in different animal models demonstrated a key role of the NP system in the development of hypertension. Importantly, these studies provided relevant insights for a better comprehension of the pathogenesis of hypertension and related cardiovascular phenotypes in humans. Thus, investigation of the role of NPs in hypertension offers an excellent example in translational medicine. In this review article, we will summarize the most compelling evidence regarding the molecular mechanisms underlying the physiological and pathological impact of NPs on blood pressure regulation and on hypertension development. We will also discuss the protective effect of NPs toward the increased susceptibility to hypertensive target organ damage

    The T2238C human atrial natriuretic peptide molecular variant and the risk of cardiovascular diseases

    Get PDF
    Atrial natriuretic peptide (ANP) is a cardiac hormone which plays important functions to maintain cardio-renal homeostasis. The peptide structure is highly conserved among species. However, a few gene variants are known to fall within the human ANP gene. The variant rs5065 (T2238C) exerts the most substantial effects. The T to C transition at the 2238 position of the gene (13-23% allele frequency in the general population) leads to the production of a 30-, instead of 28-, amino-acid-long α-carboxy-terminal peptide. In vitro, CC2238/αANP increases the levels of reactive oxygen species and causes endothelial damage, vascular smooth muscle cells contraction, and increased platelet aggregation. These effects are achieved through the deregulated activation of type C natriuretic peptide receptor, the consequent inhibition of adenylate cyclase activity, and the activation of Giα proteins. In vivo, endothelial dysfunction and increased platelet aggregation are present in human subjects carrying the C2238/αANP allele variant. Several studies documented an increased risk of stroke and of myocardial infarction in C2238/αANP carriers. Recently, an incomplete response to antiplatelet therapy in ischemic heart disease patients carrying the C2238/αANP variant and undergoing percutaneous coronary revascularization has been reported. In summary, the overall evidence supports the concept that T2238C/ANP is a cardiovascular genetic risk factor that needs to be taken into account in daily clinical practice

    C2238/αANP modulates apolipoprotein E through Egr-1/miR199a in vascular smooth muscle cells in vitro

    Get PDF
    Subjects carrying the T2238C ANP gene variant have a higher risk to suffer a stroke or myocardial infarction. The mechanisms through which T2238C/αANP exerts detrimental vascular effects need to be fully clarified. In the present work we aimed at exploring the impact of C2238/αANP (mutant form) on atherosclerosis-related pathways. As a first step, an atherosclerosis gene expression macroarray analysis was performed in vascular smooth muscle cells (VSMCs) exposed to either T2238/αANP (wild type) or C2238/αANP. The major finding was that apolipoprotein E (ApoE) gene expression was significantly downregulated by C2238/αANP and it was upregulated by T2238/αANP. We subsequently found that C2238/αANP induces ApoE downregulation through type C natriuretic peptide receptor (NPR-C)-dependent mechanisms involving the upregulation of miR199a-3p and miR199a-5p and the downregulation of DNAJA4. In fact, NPR-C knockdown rescued ApoE level. Upregulation of miR199a by NPR-C was mediated by a reactive oxygen species-dependent increase of the early growth response protein-1 (Egr-1) transcription factor. In fact, Egr-1 knockdown abolished the impact of C2238/αANP on ApoE and miR199a. Of note, downregulation of ApoE by C2238/αANP was associated with a significant increase in inflammation, apoptosis and necrosis that was completely rescued by the exogenous administration of recombinant ApoE. In conclusion, our study dissected a novel mechanism of vascular damage exerted by C2238/αANP that is mediated by ApoE downregulation. We provide the first demonstration that C2238/αANP downregulates ApoE in VSMCs through NPR-C-dependent activation of Egr-1 and the consequent upregulation of miR199a. Restoring ApoE levels could represent a potential therapeutic strategy to counteract the harmful effects of C2238/αANP

    Real-life appraisal on blood pressure targets achievement in adult outpatients at high cardiovascular risk

    Get PDF
    Background and aim: Although hypertension guidelines highlight the benefits of achieving the recommended blood pressure (BP) targets, hypertension control rate is still insufficient, mostly in high or very high cardiovascular (CV) risk patients. Thus, we aimed to estimate BP control in a cohort of patients at high CV risk in both primary and secondary prevention. Methods and results: A single-center, cross-sectional study was conducted by extracting data from a medical database of adult outpatients aged 40–75 years, who were referred to our Hypertension Unit, Rome (IT), for hypertension assessment. Office BP treatment targets were defined according to 2018 ESC/ESH guidelines as: a)<130/80 mmHg in individuals aged 40–65 years; b)<140/80 mmHg in subjects aged >65 years. Primary prevention patients with SCORE <5% were considered to be at low-intermediate risk, whilst individuals with SCORE ≥5% or patients with comorbidities were defined to be at very high risk. Among 6354 patients (47.2% female, age 58.4 ± 9.6 years), 4164 (65.5%) were in primary prevention with low-intermediate CV risk, 1831 (28.8%) in primary prevention with high-very high CV risk and 359 (5.6%) in secondary prevention. In treated hypertensive outpatients, uncontrolled hypertension rate was significantly higher in high risk primary prevention than in low risk primary prevention and secondary prevention patients (18.4% vs 24.4% vs. 12.5%, respectively; P < 0.001). In high risk primary prevention diabetic patients only 10% achieved the recommended BP targets. Conclusions: Our data confirmed unsatisfactory BP control among high-risk patients, both in primary and secondary prevention, and suggest the need for a more stringent BP control policies in these patients

    Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat

    Get PDF
    UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-κB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-κB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP

    Functional Role of Natriuretic Peptides in Risk Assessment and Prognosis of Patients with Mitral Regurgitation

    Get PDF
    The management of mitral valve regurgitation (MR), a common valve disease, represents a challenge in clinical practice, since the indication for either surgical or percutaneous valve replacement or repair are guided by symptoms and by echocardiographic parameters which are not always feasible. In this complex scenario, the use of natriuretic peptide (NP) levels would serve as an additive diagnostic and prognostic tool. These biomarkers contribute to monitoring the progression of the valve disease, even before the development of hemodynamic consequences in a preclinical stage of myocardial damage. They may contribute to more accurate risk stratification by identifying patients who are more likely to experience death from cardiovascular causes, heart failure, and cardiac hospitalizations, thus requiring surgical management rather than a conservative approach. This article provides a comprehensive overview of the available evidence on the role of NPs in the management, risk evaluation, and prognostic assessment of patients with MR both before and after surgical or percutaneous valve repair. Despite largely positive evidence, a series of controversial findings exist on this relevant topic. Recent clinical trials failed to assess the role of NPs following the interventional procedure. Future larger studies are required to enable the introduction of NP levels into the guidelines for the management of MR

    Beneficial Effects of Citrus Bergamia Polyphenolic Fraction on Saline Load-Induced Injury in Primary Cerebral Endothelial Cells from the Stroke-Prone Spontaneously Hypertensive Rat Model

    Get PDF
    High salt load is a known noxious stimulus for vascular cells and a risk factor for cardiovascular diseases in both animal models and humans. The stroke-prone spontaneously hypertensive rat (SHRSP) accelerates stroke predisposition upon high-salt dietary feeding. We previously demonstrated that high salt load causes severe injury in primary cerebral endothelial cells isolated from SHRSP. This cellular model offers a unique opportunity to test the impact of substances toward the mechanisms underlying high-salt-induced vascular damage. We tested the effects of a bergamot polyphenolic fraction (BPF) on high-salt-induced injury in SHRSP cerebral endothelial cells. Cells were exposed to 20 mM NaCl for 72 h either in the absence or the presence of BPF. As a result, we confirmed that high salt load increased cellular ROS level, reduced viability, impaired angiogenesis, and caused mitochondrial dysfunction with a significant increase in mitochondrial oxidative stress. The addition of BPF reduced oxidative stress, rescued cell viability and angiogenesis, and recovered mitochondrial function with a significant decrease in mitochondrial oxidative stress. In conclusion, BPF counteracts the key molecular mechanisms underlying high-salt-induced endothelial cell damage. This natural antioxidant substance may represent a valuable adjuvant to treat vascular disorders

    Brain overexpression of uncoupling protein-2 (Ucp2) delays renal damage and stroke occurrence in stroke-prone spontaneously hypertensive rats

    Get PDF
    The downregulation of uncoupling protein-2 (UCP2) is associated with increased brain and kidney injury in stroke-prone spontaneously hypertensive rats (SHRSP) fed with a Japanese style hypersodic diet (JD). Systemic overexpression of UCP2 reduces organ damage in JD-fed SHRSP. We examined the effect of brain-specific UCP2 overexpression on blood pressure (BP), stroke occurrence and kidney damage in JD-fed SHRSP. Rats received a single i.c.v. injection of a lentiviral vector encoding UCP2 (LV-UCP2), or an empty vector. The brain delivery of LV-UCP2 significantly delayed the occurrence of stroke and kidney damage. The large reduction of proteinuria observed after LV-UCP2 injection was unexpected, because BP levels were unchanged. At the time of stroke, rats treated with LV-UCP2 still showed a large UCP2 upregulation in the striatum, associated with increases in OPA1 and FIS1 protein levels, and reductions in PGC1-α, SOD2, TNFα mRNA levels and NRF2 protein levels. This suggested UCP2 overexpression enhanced mitochondrial fusion and fission and reduced oxidative damage and inflammation in the striatum of JD-fed SHRSP rats. Our data suggest the existence of central mechanisms that may protect against hypertension-induced organ damage independently of BP, and strengthen the suitability of strategies aimed at enhancing UCP2 expression for the treatment of hypertensive damage

    Differential expression of sphingolipid metabolizing enzymes in spontaneously hypertensive rats: a possible substrate for susceptibility to brain and kidney damage

    Get PDF
    Alterations in the metabolism of sphingolipids, a class of biologically active molecules in cell membranes with direct effect on vascular homeostasis, are increasingly recognized as important determinant in different vascular disorders. However, it is not clear whether sphingolipids are implicated in the pathogenesis of hypertension-related cerebrovascular and renal damage. In this study, we evaluated the existence of possible abnormalities related to the sphingolipid metabolism in the brain and kidneys of two well validated spontaneously hypertensive rat strains, the stroke-prone (SHRSP) and the stroke-resistant (SHRSR) models, as compared to the normotensive Wistar Kyoto (WKY) rat strain. Our results showed a global alteration in the metabolism of sphingolipids in both cerebral and renal tissues of both hypertensive strains as compared to the normotensive rat. However, few defects, such as reduced expression of enzymes involved in the metabolism/catabolism of sphingosine-1-phosphate and in the de novo biosynthetic pathways, were exclusively detected in the SHRSP. Although further studies are necessary to fully understand the significance of these findings, they suggest that defects in specific lipid molecules and/or their related metabolic pathways may likely contribute to the pathogenesis of hypertensive target organ damage and may eventually serve as future therapeutic targets to reduce the vascular consequences of hypertension

    Dickkopf-3 upregulates VEGF in cultured human endothelial cells by activating activin receptor-like kinase 1 (ALK1) pathway

    Get PDF
    Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs
    corecore