2 research outputs found

    Design and Characterization of Myristoylated and Non-Myristoylated Peptides Effective against Candida spp. Clinical Isolates

    No full text
    The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens

    Focused library of phenyl-fused macrocyclic amidinoureas as antifungal agents

    No full text
    The rise of antimicrobial-resistant phenotypes and the spread of the global pandemic of COVID-19 are worsening the outcomes of hospitalized patients for invasive fungal infections. Among them, candidiases are seriously worrying, especially since the currently available drug armamentarium is extremely limited. We recently reported a new class of macrocyclic amidinoureas bearing a guanidino tail as promising antifungal agents. Herein, we present the design and synthesis of a focused library of seven derivatives of macrocyclic amidinoureas, bearing a second phenyl ring fused with the core. Biological activity evaluation shows an interesting antifungal profile for some compounds, resulting to be active on a large panel of Candida spp. and C. neoformans. PAMPA experiments for representative compounds of the series revealed a low passive diffusion, suggesting a membrane-based mechanism of action or the involvement of active transport systems. Also, compounds were found not toxic at high concentrations, as assessed through MTT assays.14n
    corecore