12 research outputs found

    Measurement as Absorption of Feynman Trajectories: Collapse of the Wave Function Can be Avoided

    Get PDF
    We define a measuring device (detector) of the coordinate of quantum particle as an absorbing wall that cuts off the particle's wave function. The wave function in the presence of such detector vanishes on the detector. The trace the absorbed particles leave on the detector is identifies as the absorption current density on the detector. This density is calculated from the solution of Schr\"odinger's equation with a reflecting boundary at the detector. This current density is not the usual Schr\"odinger current density. We define the probability distribution of the time of arrival to a detector in terms of the absorption current density. We define coordinate measurement by an absorbing wall in terms of 4 postulates. We postulate, among others, that a quantum particle has a trajectory. In the resulting theory the quantum mechanical collapse of the wave function is replaced with the usual collapse of the probability distribution after observation. Two examples are presented, that of the slit experiment and the slit experiment with absorbing boundaries to measure time of arrival. A calculation is given of the two dimensional probability density function of a free particle from the measurement of the absorption current on two planes.Comment: 20 pages, latex, no figure

    A Path Intergal Approach to Current

    Full text link
    Discontinuous initial wave functions or wave functions with discontintuous derivative and with bounded support arise in a natural way in various situations in physics, in particular in measurement theory. The propagation of such initial wave functions is not well described by the Schr\"odinger current which vanishes on the boundary of the support of the wave function. This propagation gives rise to a uni-directional current at the boundary of the support. We use path integrals to define current and uni-directional current and give a direct derivation of the expression for current from the path integral formulation for both diffusion and quantum mechanics. Furthermore, we give an explicit asymptotic expression for the short time propagation of initial wave function with compact support for both the cases of discontinuous derivative and discontinuous wave function. We show that in the former case the probability propagated across the boundary of the support in time Δt\Delta t is O(Δt3/2)O(\Delta t^{3/2}) and the initial uni-directional current is O(Δt1/2)O(\Delta t^{1/2}). This recovers the Zeno effect for continuous detection of a particle in a given domain. For the latter case the probability propagated across the boundary of the support in time Δt\Delta t is O(Δt1/2)O(\Delta t^{1/2}) and the initial uni-directional current is O(Δt−1/2)O(\Delta t^{-1/2}). This is an anti-Zeno effect. However, the probability propagated across a point located at a finite distance from the boundary of the support is O(Δt)O(\Delta t). This gives a decay law.Comment: 17 pages, Late

    Matter wave pulses characteristics

    Full text link
    We study the properties of quantum single-particle wave pulses created by sharp-edged or apodized shutters with single or periodic openings. In particular, we examine the visibility of diffraction fringes depending on evolution time and temperature; the purity of the state depending on the opening-time window; the accuracy of a simplified description which uses ``source'' boundary conditions instead of solving an initial value problem; and the effects of apodization on the energy width.Comment: 11 pages, 11 figure
    corecore