14,495 research outputs found
A gauge approach to the "pseudogap" phenomenology of the spectral weight in high Tc cuprates
We assume the t-t'-J model to describe the CuO_2 planes of hole-doped
cuprates and we adapt the spin-charge gauge approach, previously developed for
the t-J model, to describe the holes in terms of a spinless fermion carrying
the charge (holon) and a neutral boson carrying spin 1/2 (spinon), coupled by a
slave-particle gauge field. In this framework we consider the effects of a
finite density of incoherent holon pairs in the normal state. Below a crossover
temperature, identified as the experimental "upper pseudogap", the scattering
of the "quanta" of the phase of the holon-pair field against holons reproduces
the phenomenology of Fermi arcs coexisting with gap in the antinodal region. We
thus obtain a microscopic derivation of the main features of the hole spectra
due to pseudogap. This result is obtained through a holon Green function which
follows naturally from the formalism and analytically interpolates between a
Fermi liquid-like and a d-wave superconductor behavior as the coherence length
of the holon pair order parameter increases. By inserting the gauge coupling
with the spinon we construct explicitly the hole Green function and calculate
its spectral weight and the corresponding density of states. So we prove that
the formation of holon pairs induces a depletion of states on the hole Fermi
surface. We compare our results with ARPES and tunneling experimental data. In
our approach the hole preserves a finite Fermi surface until the
superconducting transition, where it reduces to four nodes. Therefore we
propose that the gap seen in the normal phase of cuprates is due to the thermal
broadening of the SC-like peaks masking the Fermi-liquid peak. The Fermi arcs
then correspond to the region of the Fermi surface where the Fermi-liquid peak
is unmasked.Comment: 10 figures, comments and references added, 2 figures change
Interacting branes, dual branes, and dyonic branes: a unifying lagrangian approach in D dimensions
This paper presents a general covariant lagrangian framework for the dynamics
of a system of closed n-branes and dual (D-n-4)-branes in D dimensions,
interacting with a dynamical (n+1)-form gauge potential. The framework proves
sufficiently general to include also a coupling of the branes to (the bosonic
sector of) a dynamical supergravity theory. We provide a manifestly
Lorentz-invariant and S-duality symmetric Lagrangian, involving the (n+1)-form
gauge potential and its dual (D-n-3)-form gauge potential in a symmetric way.
The corresponding action depends on generalized Dirac-strings. The requirement
of string-independence of the action leads to Dirac-Schwinger quantization
conditions for the charges of branes and dual branes, but produces also
additional constraints on the possible interactions. It turns out that a system
of interacting dyonic branes admits two quantum mechanically inequivalent
formulations, involving inequivalent quantization conditions. Asymmetric
formulations involving only a single vector potential are also given. For the
special cases of dyonic branes in even dimensions known results are easily
recovered. As a relevant application of the method we write an effective action
which implements the inflow anomaly cancellation mechanism for interacting
heterotic strings and five-branes in D=10. A consistent realization of this
mechanism requires, in fact, dynamical p-form potentials and a systematic
introduction of Dirac-strings.Comment: 36 pages, LaTeX, no figure
Spin-statistics transmutation in relativistic quantum field theories of dyons
We analyse spin and statistics of quantum dyon fields, i.e. fields carrying
both electric and magnetic charge, in 3+1 space-time dimensions. It has been
shown long time ago that, at the quantum mechanical level, a composite dyon
made out of a magnetic pole of charge g and a particle of electric charge e
possesses half-integral spin and fermionic statistics, if the constituents are
bosons and the Dirac quantization condition holds, with n odd. This
phenomenon is called spin-statistics transmutation. We show that the same
phenomenon occurs at the quantum field theory level for an elementary dyon.
This analysis requires the construction of gauge invariant charged dyon fields.
Dirac's proposal for such fields, relying on a Coulomb-like photon cloud, leads
to quantum correlators exhibiting an unphysical dependence on the Dirac-string.
Recently Froehlich and Marchetti proposed a recipe for charged dyon fields,
based on a sum over Mandelstam-strings, which overcomes this problem. Using
this recipe we derive explicit expressions for the quantum field theory
correlators and we provide a proof of the occurrence of spin-statistics
transmutation. The proof reduces to a computation of the self-linking numbers
of dyon worldlines and Mandelstam strings, projected on a fixed time
three-space. Dyon composites are also analysed. The transmutation discussed in
this paper bares some analogy with the appearance of anomalous spin and
statistics for particles or vortices in Chern-Simons theories in 2+1
dimensions. However, peculiar features appear in 3+1 dimensions e.g. in the
spin addition rule.Comment: 32 pages, LaTeX, no figure
Superfluidity, Sound Velocity and Quasi Condensation in the 2D BCS-BEC Crossover
We study finite-temperature properties of a two-dimensional superfluid made
of ultracold alkali-metal atoms in the BCS-BEC crossover. We investigate the
region below the critical temperature of the
Berezinskii-Kosterlitz-Thouless phase transition, where there is
quasi-condensation, by analyzing the effects of phase and amplitude
fluctuations of the order parameter. In particular, we calculate the superfluid
fraction, the sound velocity and the quasi-condensate fraction as a function of
the temperature and of the binding energy of fermionic pairs.Comment: 7 pages, 4 figures, improved version to be published in Phys. Rev.
gauge theory of underdoped cuprate superconductors
The Chern-Simons gauge theory is applied to study the 2-D
model describing the normal state of underdoped cuprate superconductors.
The U(1) field produces a flux phase for holons converting them into Dirac-like
fermions, while the SU(2) field, due to the coupling to holons gives rise to a
gap for spinons. An effective low-energy action involving holons, spinons and a
self-generated U(1) gauge field is derived. The Fermi surface and electron
spectral function obtained are consistent with photoemission experiments. The
theory predicts a minimal gap proportional to doping concentration. It also
explains anomalous transport properties including linear dependence of the
in-plane resistivity.Comment: 8 pages, REVTEX, no figure
Energy Efficient Scheduling for Loss Tolerant IoT Applications with Uninformed Transmitter
In this work we investigate energy efficient packet scheduling problem for
the loss tolerant applications. We consider slow fading channel for a point to
point connection with no channel state information at the transmitter side
(CSIT). In the absence of CSIT, the slow fading channel has an outage
probability associated with every transmit power. As a function of data loss
tolerance parameters and peak power constraints, we formulate an optimization
problem to minimize the average transmit energy for the user equipment (UE).
The optimization problem is not convex and we use stochastic optimization
technique to solve the problem. The numerical results quantify the effect of
different system parameters on average transmit power and show significant
power savings for the loss tolerant applications.Comment: Published in ICC 201
- …
