12 research outputs found

    Cell cycle duration at the time of maternal zygotic transition for in vitro produced bovine embryos: effect of oxygen tension and transcription inhibition.

    Full text link
    Early embryonic cleavages are mostly regulated by maternal components then control of development progressively depends on newly synthesized zygotic products. The timing of the first cleavages is a way to assess embryo quality. The goal of this study was to evaluate the duration of the fourth cell cycle, at the time of maternal-to-zygotic transition (MZT) in in vitro-produced bovine embryos by means of cinematographic analysis. We found that 75% of the embryos displayed a long fourth cycle (43.5 +/- 5.4 h) whereas the remaining embryos had a very short fourth cell cycle (8.9 +/- 2.9 h). Both groups did not differ in cleavage rhythm up to the eight-cell stage and timing of cavitation and blastocyst expansion was identical. However, embryos with a short fourth cell cycle had a better blastocyst rate than embryos with a long cycle (59% versus 38%, P < 0.01). Total cell number, inner cell mass (ICM):total cell ratio, and hatching rate were identical for blastocysts produced from embryos with either a long or a short fourth cell cycle. In a second experiment, we showed that increasing the oxygen tension, from 5% to 20%, decreased the percentage of embryos with a short fourth cell cycle, from 25% to 11% (P < 0.01), indicating that suboptimal culture conditions can influence the length of this cycle. Finally, we investigated whether fourth cell cycle duration could be influenced by transcription inhibition. With alpha-amanitin added at 18 h postinsemination (HPI), cleavage was reduced (66% versus 79%) and, at 70 HPI, the 9- to 16-cell rate increased (50% versus 25%) concomitantly with a 5- to 8-cell rate decrease (16% versus 47%). A similar pattern was observed when the drug was added at 6 HPI or 42 HPI but not at 0 HPI. Cinematographic analysis revealed that alpha-amanitin increased the first cell cycle duration whereas the second and third cell cycles were not affected. With the drug, one third of the embryos could develop up to the 9- to 16-cell stage and they all had a short fourth cell cycle (11.2 +/- 3.7 h) with a good synchrony of cleavage between blastomeres. These results suggest that duration of the fourth cell cycle of bovine embryo, during the MZT, is under a zygotic transcriptional control that can be affected by oxidative conditions

    Peroxiredoxin 6 is upregulated in bovine oocytes and cumulus cells during in vitro maturation: role of intercellular communication.

    No full text
    Peroxiredoxins are peroxidases involved in antioxidant defense and intracellular signaling. Expression of transcripts coding for peroxiredoxin 6 (PRDX6) has been previously described to be upregulated in oocytes after in vitro maturation, a period during which general transcription decreases dramatically in oocytes. The aim of the present work was to evaluate PRDX6 regulation in bovine cumulus-oocyte complexes in relation to maturation and intercellular communication. PRDX6 expression was analyzed by reverse transcription-PCR and Western blotting in oocytes and cumulus cells before and after in vitro maturation. PRDX6 was found to be upregulated at the mRNA and protein levels in both cell types after maturation. The effect of paracrine and gap junctional communication on PRDX6 expression was then assessed by culturing cumulus clusters in the presence or absence of denuded oocytes. While PRDX6 upregulation in oocytes required intact cumulus-oocyte junctions, the presence of denuded oocytes was necessary but sufficient for the upregulation to occur in cumulus cells. Finally, the influence of recombinant mouse growth differentiation factor-9 (GDF-9) on PRDX6 expression in cumulus cells was studied. GDF-9 induced cumulus expansion and PRDX6 upregulation in bovine cumulus clusters. Altogether, our data suggest that PRDX6 upregulation in cumulus-oocyte complexes during in vitro maturation is mutually regulated by both cell types: PRDX6 upregulation in oocytes would require gap junctions with cumulus cells, while upregulation in cumulus would depend on secretion of oocyte paracrine factor(s) with GDF-9 being a likely candidate

    Left atrial appendage occlusion and pulmonary vein isolation : interest of non-invasive imaging.

    No full text
    A 67-year-old woman with paroxysmal atrial fibrillation (AF), not a candidate for anticoagulant therapy, underwent a combined procedure of pulmonary vein isolation (PVI) and occlusion of the left atrial appendage (LAA) with the Amplatzer cardiac plug prosthesis (AGA Medical Corporation, Plymouth, U.S.A.). After PVI, implantation of the Amplatzer cardiac plug was performed under transoesophageal echocardiography guidance after a complete evaluation of the LAA obtained by different imaging techniques. One month later, multidetector computed tomography and transoesophageal echocardiography confirmed proper position of the Amplatzer cardiac plug not interfering with the surrounding structures and the absence of complications resulting from either PVI or LAA closure

    Impact of Sur1 gene inactivation on the morphology of mouse pancreatic endocrine tissue.

    No full text
    In congenital hyperinsulinism of infancy (CHI), the loss of K-ATP channels (composed of Kir6.2 and SUR1 subunits) in beta cells induces permanent insulin secretion and severe hypoglycaemia. By contrast, Sur1 ( -/- ) mice do not present such defects. We have investigated the impact of Sur1 gene inactivation on mouse islet cell morphology, structure and basic physiology. Pancreata were collected from young, adult and old wild-type (WT) and Sur1 ( -/- ) mice. After immunostaining for hormone, the total endocrine tissue, cell proportion, cell size and intra-insular distribution, hormone content and Glut-2 expression were quantified by morphometry. Basic physiological parameters were also measured. In young Sur1 ( -/- ) mice, the total endocrine tissue and proportion of beta cells were higher (P<0.05) than in WT mice, whereas the proportion of delta cells was lower (P<0.01). In old Sur1 ( -/- ) mice, alpha cells were frequently located in the central regions of islets (unlike WT islets) and their proportion was increased (P<0.05). Glut-2 protein and mRNA levels were lower in old Sur1 ( -/- ) islets (P<0.02). Insulinaemia, fasting insulin and glucagon contents were equivalent in both groups of pancreata. Thus, the islets of Sur1 ( -/- ) mice present morphological modifications that have not been described in CHI and that might reflect an adaptive mechanism controlling insulin secretion in these mice

    Impact of adding 5.5 mM glucose to SOF medium on the development, metabolism and quality of in vitro produced bovine embryos from the morula to the blastocyst stage.

    No full text
    Although toxic for early stages of embryo development, glucose is a physiological metabolic substrate at the morula and blastocyst stages. We evaluated the effect of adding 5.5 mM glucose from the morula stage on bovine blastocyst development and quality. In vitro matured and fertilised bovine oocytes were cultured in modified Synthetic Oviduct Fluid medium containing 5% fetal calf serum, but without added glucose, up to day 5 post-insemination (pi). Morulae were selected and further cultured in the presence or absence of 5.5 mM glucose. Blastocyst and hatched blastocyst rates were recorded. Oxygen, glucose and pyruvate uptakes as well as lactate release were evaluated. The quality of the resulting blastocysts was evaluated by the cell allocation to the inner cell mass (ICM) and trophectoderm (TE) and by the apoptotic index. Adding glucose increased the blastocyst rate at day 8 pi (80% vs 65%) but had no impact on hatching rate (25% vs 28%). A 22% decrease in oxygen uptake was observed in the presence of glucose, concomitant with an increase in lactate release, although no change was observed in pyruvate uptake. A slight decrease in blastocyst cell number was observed at day 7 in the presence of glucose while neither the ICM/TE cell ratio nor the apoptotic index were affected. In conclusion, adding 5.5 mM glucose from the morula stage has a limited impact on blastocyst rate and quality although important modifications were observed in embryo metabolism. It remains to be determined whether those modifications could influence embryo viability after transfer

    Endoplasmic reticulum accumulation of Kir6.2 without activation of ER stress response in islet cells from adult Sur1 knockout mice.

    No full text
    Trafficking of pancreatic K(ATP) channels to the plasma membrane critically depends on masking the endoplasmic reticulum (ER) retention signals of the SUR1 and Kir6.2 subunits upon their proper assembly into functional hetero-octamers. When expressed in the absence of the partner protein, each subunit might accumulate in the ER and trigger beta-cell ER stress and oxidative stress. To test this hypothesis, Kir6.2 localisation, ER ultra-structure and ER-stress- and oxidative-stress-response gene mRNA levels were evaluated in pancreatic endocrine cells from adult wild-type (WT) and Sur1 knockout (Sur1 ( -/- )) mice. As previously reported, Kir6.2 was mainly expressed on secretory granules and at the plasma membrane of WT islet cells. In contrast, like the ER chaperone calreticulin, Kir6.2 was primarily localised in the rough endoplasmic reticulum (RER) of Sur1 ( -/- ) islet cells. ER retention of Kir6.2 was demonstrated (electron microscopy) by a significant increase in the length and Kir6.2 density of RER in Sur1 ( -/- ) vs WT islet cells. Despite Kir6.2 retention in RER, Xbp1 mRNA splicing and mRNA levels of preproinsulin and ER-stress-response genes Bip, Edem and Gadd153 were similar in WT and Sur1 ( -/- ) islets. However, mRNA levels of the antioxidant enzymes Sod1, Sod2, Gpx2 and catalase were significantly up-regulated in Sur1 ( -/- ) islets. Sequestration of Kir6.2 in RER of Sur1 ( -/- ) islet cells is thus associated with an increase in RER length and mild oxidative stress without activation of the classical ER stress response

    Characterization of β cell plasticity mechanisms induced in mice by a transient source of exogenous insulin

    No full text
    β cell plasticity governs the adjustment of β cell mass and function to ensure normoglycemia. The study of how β cell mass is controlled and the identification of alternative sources of β cells are active fields of research. β cell plasticity has been implicated in numerous physiological and pathological conditions. We developed a mice model in which we induced major β cell mass atrophy by implanting insulin pellets (IPI) for 7 or 10 days. The implants were then removed (IPR) to observe the timing and characteristics of β cell regeneration in parallel to changes in glycemia. Following IPR, the endocrine mass was reduced by 60% at day 7 and by 75% at day 10, and transient hyperglycemia was observed, which resolved within 1 week. Five days after IPR, enhanced β cell proliferation and an increased frequency of small islets were observed in 7-day IPI mice. β cell mass was fully restored after an additional 2 days. For the 10-day IPI group, β cell and endocrine mass were no longer significantly different from those of the control group at 2 weeks post-IPR. Furthermore, RT qPCR analysis of endocrine structures isolated by laser capture microdissection (LCM) indicated sequentially enhanced expression of the pancreatic transcription factors Beta2/NeuroD and Pdx-1 post-IPR. Thus, our data suggest this mouse model of β cell plasticity not only relies on replication but also involves enhanced cell differentiation plasticity
    corecore