13,863 research outputs found

    Semi-analytical solution of multilayer diffusion problems with time-varying boundary conditions and general interface conditions

    Full text link
    We develop a new semi-analytical method for solving multilayer diffusion problems with time-varying external boundary conditions and general internal boundary conditions at the interfaces between adjacent layers. The convergence rate of the semi-analytical method, relative to the number of eigenvalues, is investigated and the effect of varying the interface conditions on the solution behaviour is explored. Numerical experiments demonstrate that solutions can be computed using the new semi-analytical method that are more accurate and more efficient than the unified transform method of Sheils [Appl. Math. Model., 46:450-464, 2017]. Furthermore, unlike classical analytical solutions and the unified transform method, only the new semi-analytical method is able to correctly treat problems with both time-varying external boundary conditions and a large number of layers. The paper is concluded by replicating solutions to several important industrial, environmental and biological applications previously reported in the literature, demonstrating the wide applicability of the work.Comment: 24 pages, 8 figures, accepted version of paper published in Applied Mathematics and Computatio

    Superconducting transition temperatures of the elements related to elastic constants

    Full text link
    For a given crystal structure, say body-centred-cubic, the many-body Hamiltonian in which nuclear and electron motions are to be treated from the outset on the same footing, has parameters, for the elements, which can be classified as (i) atomic mass M, (ii) atomic number Z, characterizing the external potential in which electrons move, and (iii) bcc lattice spacing, or equivalently one can utilize atomic volume, Omega. Since the thermodynamic quantities can be determined from H, we conclude that Tc, the superconducting transition temperature, when it is non-zero, may be formally expressed as Tc = Tc^(M) (Z, Omega). One piece of evidence in support is that, in an atomic number vs atomic volume graph, the superconducting elements lie in a well defined region. Two other relevant points are that (a) Tc is related by BCS theory, though not simply, to the Debye temperature, which in turn is calculable from the elastic constants C_{11}, C_{12}, and C_{44}, the atomic weight and the atomic volume, and (b) Tc for five bcc transition metals is linear in the Cauchy deviation C* = (C_{12} - C_{44})/(C_{12} + C_{44}). Finally, via elastic constants, mass density and atomic volume, a correlation between C* and the Debye temperature is established for the five bcc transition elements.Comment: EPJB, accepte

    Integral equation for inhomogeneous condensed bosons generalizing the Gross-Pitaevskii differential equation

    Full text link
    We give here the derivation of a Gross-Pitaevskii--type equation for inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii differential equation, we obtain an integral equation that implies less restrictive assumptions than are made in the very recent study of Pieri and Strinati [Phys. Rev. Lett. 91 (2003) 030401]. In particular, the Thomas-Fermi approximation and the restriction to small spatial variations of the order parameter invoked in their study are avoided.Comment: Phys. Rev. A (accepted

    Scaling of the superconducting transition temperature in underdoped high-Tc cuprates with a pseudogap energy: Does this support the anyon model of their superfluidity?

    Full text link
    In earlier work, we have been concerned with the scaling properties of some classes of superconductors, specifically with heavy Fermion materials and with five bcc transition metals of BCS character. Both of these classes of superconductors were three-dimensional but here we are concerned solely with quasi-two-dimensional high-Tc cuprates in the underdoped region of their phase diagram. A characteristic feature of this part of the phase diagram is the existence of a pseudogap (pg). We therefore build our approach around the assumption that kB Tc / E_pg is the basic dimensionless ratio on which to focus, where the energy E_pg introduced above is a measure of the pseudogap. Since anyon fractional statistics apply to two-dimensional assemblies, we expect the fractional statistics parameter allowing `interpolation' between Fermi-Dirac and Bose-Einstein statistical distribution functions as limiting cases to play a significant role in determining kB Tc / E_pg and experimental data are analyzed with this in mind.Comment: Phys. Chem. Liquids, to be publishe

    Fast computation of effective diffusivities using a semi-analytical solution of the homogenization boundary value problem for block locally-isotropic heterogeneous media

    Full text link
    Direct numerical simulation of diffusion through heterogeneous media can be difficult due to the computational cost of resolving fine-scale heterogeneities. One method to overcome this difficulty is to homogenize the model by replacing the spatially-varying fine-scale diffusivity with an effective diffusivity calculated from the solution of an appropriate boundary value problem. In this paper, we present a new semi-analytical method for solving this boundary value problem and computing the effective diffusivity for pixellated, locally-isotropic, heterogeneous media. We compare our new solution method to a standard finite volume method and show that equivalent accuracy can be achieved in less computational time for several standard test cases. We also demonstrate how the new solution method can be applied to complex heterogeneous geometries represented by a grid of blocks. These results indicate that our new semi-analytical method has the potential to significantly speed up simulations of diffusion in heterogeneous media.Comment: 29 pages, 4 figures, 5 table

    Equilibrium molecular energies used to obtain molecular dissociation energies and heats of formation within the bond-order correlation approach

    Full text link
    Ab initio calculations including electron correlation are still extremely costly except for the smallest atoms and molecules. Therefore, our purpose in the present study is to employ a bond-order correlation approach to obtain, via equilibrium molecular energies, molecular dissociation energies and heats of formation for some 20 molecules containing C, H, and O atoms, with a maximum number of electrons around 40. Finally, basis set choice is shown to be important in the proposed procedure to include electron correlation effects in determining thermodynamic properties. With the optimum choice of basis set, the average percentage error for some 20 molecules is approximately 20% for heats of formation. For molecular dissociation energies the average error is much smaller: ~0.4.Comment: Mol. Phys., to be publishe
    • …
    corecore