18 research outputs found
Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil
The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
AGOA: A Hydration Procedure and Its Application to the 1-Phenyl-beta-Carboline Molecule
A new procedure, named AGOA, has been developed and implemented in a computer program written in FORTRAN 77 to explore the hydration structures of polar solutes using its molecular electrostatic potential (MEP). This procedure can be generalized to polar solvents other than water. It has been tested for several small molecules, and applied to complex molecules of pharmacological interest, such as the beta-carbolinic systems derived from indole. This is a stringent, but not general, test of the AGOA procedure and shows its robustness, flexibility and low computational costs, since either semiempirical or ab initio wavefunctions can be employed. The comparisons with procedures based upon the geometry optimization of the solute-water complex show the superior performance of the AGOA procedure for the anti and syn beta-carboline conformers, reassuring its use to comprehend and to quantify the specific interactions involved in solvent effects
AGOA: A Hydration Procedure and Its Application to the 1-Phenyl-b-Carboline Molecule
A new procedure, named AGOA, has been developed and implemented in a computer program written in FORTRAN 77 to explore the hydration structures of polar solutes using its molecular electrostatic potential (MEP). This procedure can be generalized to polar solvents other than water. It has been tested for several small molecules, and applied to complex molecules of pharmacological interest, such as the beta-carbolinic systems derived from indole. This is a stringent, but not general, test of the AGOA procedure and shows its robustness, flexibility and low computational costs, since either semiempirical or ab initio wavefunctions can be employed. The comparisons with procedures based upon the geometry optimization of the solute-water complex show the superior performance of the AGOA procedure for the anti and syn beta-carboline conformers, reassuring its use to comprehend and to quantify the specific interactions involved in solvent effects
Isolation, homology modeling and renal effects of a C-type natriuretic peptide from the venom of the Brazilian yellow scorpion (Tityus serrulatus)
Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityusserrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1μg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1μg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C. © 2013 Elsevier Ltd
Solid Dispersions of Imidazolidinedione by PEG and PVP Polymers with Potential Antischistosomal Activities
Solid dispersions have been used as a strategy to improve the solubility, dissolution rate, and bioavailability of poor water-soluble drugs. The increase of the dissolution rate presented by (5Z)-3-(4-chloro-benzyl)-5-(4-nitro-benzylidene)-imidazolidine-2,4-dione (LPSF/FZ4) from the solid dispersions is related to the existence of intermolecular interactions of hydrogen bond type (>N–H...O<) between the amide group (>N–H) of the LPSF/FZ4 and the ether group (–O–) of the polyethyleneglycol polymer, or the carbonyl (C=O) of the polyvinylpyrrolidone polymer (PVP). The intensity of these interactions is directly reflected in the morphology acquired by LPSF/FZ4 in these systems, where a new solid phase, in the form of amorphous aggregates of irregular size, was identified through scanning electron microscopy and confirmed in the characterizations achieved using X-ray diffraction and thermal analysis of DSC. The solid dispersions with the polymer PVP, in higher concentrations, were revealed to be the best option to be used in the formulations of LPSF/FZ4 in both theoretical and experimental studies
Harpalycin 2 inhibits the enzymatic and platelet aggregation activities of PrTX-III, a D49 phospholipase A(2) from Bothrops pirajai venom
Background: Harpalycin 2 (HP-2) is an isoflavone isolated from the leaves of Harpalyce brasiliana Benth., a snakeroot found in northeast region of Brazil and used in folk medicine to treat snakebite. Its leaves are said to be anti-inflammatory. Secretory phospholipases A(2) are important toxins found in snake venom and are structurally related to those found in inflammatory conditions in mammals, as in arthritis and atherosclerosis, and for this reason can be valuable tools for searching new anti-phospholipase A(2) drugs.Methods: HP-2 and piratoxin-III (PrTX-III) were purified through chromatographic techniques. The effect of HP-2 in the enzymatic activity of PrTX-III was carried out using 4-nitro-3-octanoyloxy-benzoic acid as the substrate. PrTX-III induced platelet aggregation was inhibited by HP-2 when compared to aristolochic acid and p-bromophenacyl bromide (p-BPB). In an attempt to elucidate how HP-2 interacts with PrTX-III, mass spectrometry, circular dichroism and intrinsic fluorescence analysis were performed. Docking scores of the ligands (HP-2, aristolochic acid and p-BPB) using PrTX-III as target were also calculated.Results: HP-2 inhibited the enzymatic activity of PrTX-III (IC50 11.34 +/- 0.28 mu g/mL) although it did not form a stable chemical complex in the active site, since mass spectrometry measurements showed no difference between native (13,837.34 Da) and HP-2 treated PrTX-III (13,856.12 Da). A structural analysis of PrTX-III after treatment with HP-2 showed a decrease in dimerization and a slight protein unfolding. In the platelet aggregation assay, HP-2 previously incubated with PrTX-III inhibited the aggregation when compared with untreated protein. PrTX-III chemical treated with aristolochic acid and p-BPB, two standard PLA(2) inhibitors, showed low inhibitory effects when compared with the HP-2 treatment. Docking scores corroborated these results, showing higher affinity of HP-2 for the PrTX-III target (PDB code: 1GMZ) than aristolochic acid and p-BPB. HP-2 previous incubated with the platelets inhibits the aggregation induced by untreated PrTX-III as well as arachidonic acid.Conclusion: HP-2 changes the structure of PrTX-III, inhibiting the enzymatic activity of this enzyme. In addition, PrTX-III platelet aggregant activity was inhibited by treatment with HP-2, p-BPB and aristolochic acid, and these results were corroborated by docking scores
Discovery of Phthalimides as Immunomodulatory and Antitumor Drug Prototypes
Brazilian National Council of Research (CNPq)[471834/2006-8]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Brazilian National Council of Research (CNPq)[479982/2008-2]Brazilian National Council of Research (CNPq)[473699/2008-7]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FACEPEFACEP
IL-6 and IL-10 Anti-Inflammatory Activity Links Exercise to Hypothalamic Insulin and Leptin Sensitivity through IKKb and ER Stress Inhibition
Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKb activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKb/NF-kB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKb/NF-kB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKb and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action o