3 research outputs found

    Effectiveness of anthocyanin-containing foods and nutraceuticals in mitigating oxidative stress, inflammation, and cardiovascular health-related biomarkers: a systematic review of animal and human interventions†

    No full text
    Cardiovascular diseases (CVDs) are a group of chronic health disorders prevalent worldwide that claim millions of lives yearly. Inflammation and oxidative stress are intricately associated with myocardial tissue damage, endothelial dysfunction, and increased odds of heart failure. Thus, dietary strategies aimed at decreasing the odds of CVDs are paramount. In this regard, the consumption of anthocyanins, natural pigments found in edible flowers, fruits, and vegetables, has attracted attention due to their potential to promote cardiovascular health. The main mechanisms of action linked with their protective effects on antioxidant and anti-inflammatory activities, serum lipid profile modulation, and other cardiovascular health parameters are explained and exemplified. However, little is known about the dose-dependency nature of the effects, which anthocyanin has better efficiency, and whether anthocyanin-containing foods display better in vivo efficacy than nutraceuticals (i.e., concentrated extracts containing higher levels of anthocyanins than foods). Thus, this systematic review focused on determining the effects of anthocyanin-containing foods and nutraceuticals on biomarkers associated with CVDs using animal studies and human interventions supported by in vitro mechanistic insights. Overall, the results showed that the regular consumption of anthocyanin-containing foods and nutraceuticals improved vascular function, lipid profile, and antioxidant and anti-inflammatory effects. The daily dosage, the participants’ health status, and the duration of the intervention also significantly influenced the results.</p

    Designing sustainable antioxidant and anti-inflammatory ingredients from seaweeds for functional gummies

    No full text
    Atlantic wakame (AW) and sea lettuce (SL) are edible seaweeds commonly produced in Asia and Europe, typically consumed as fresh or dried biomass. Because of the short shelf life, developing new post-harvest treatments, such as the extraction of bioactive compounds, is essential for establishing reliable macroalgae supply chains for food applications. This study aims to develop a sustainable and functional seaweed-based food ingredient rich in bioactive compounds for functional food applications. The results indicated that ultrasound-assisted extraction using 70% ethanol for 10 min was optimal for both SL (410±23 mg of gallic acid equivalent [GAE] per kg) and AW (666±63 mg GAE/kg). Both extracts exhibited chemical antioxidant activity and inhibited the protection of human plasma against chemically induced oxidation. SL extract did not exhibit free radical scavenging activity (DPPH). Importantly, no cytotoxicity (IC50>250 µg/mL) was observed in human-derived THP-1, HUVEC, HT-29, and HepG2 cell lines, ensuring the relative safety of these extracts for potential food technology applications. AW and SL extracts (100 µg/mL) reduced intracellular reactive oxygen species generation in lipopolysaccharide (LPS)-challenged THP-1 cells by 66% and 30%, respectively, highlighting the higher antioxidant activity of AW extract. AW and SL extracts did not modulate TNF-α and IL-6 secretion to show anti-inflammatory activity. Gummies infused with AW and SL extracts had a higher total phenolic content than commercial products, but their antioxidant activity was lower. Sensory evaluation revealed that gummies containing seaweed extracts received lower scores for colour, taste, overall impression, and purchase intention than those without extracts.</p

    Food-grade delivery systems of Brazilian propolis from Apis mellifera: From chemical composition to bioactivities in vivo

    No full text
    Brazilian propolis from Apis mellifera is widely studied worldwide due to its unique chemical composition and biological properties, such as antioxidant, antimicrobial, and anti-inflammatory. However, although many countries produce honey, another bee product, the consumption of propolis as a functional ingredient is linked to hydroethanolic extract. Hence, other food uses of propolis still have to be incorporated into food systems. Assuming that propolis is a rich source of flavonoids and is regarded as a food-grade ingredient for food and pharmaceutical applications, this review provides a theoretical and practical basis for optimising the bioactive properties of Brazilian propolis, encompassing the extraction processes and incorporating its bioactive compounds in the delivery systems for food applications. Overall, pharmacotechnical resources can optimise the extraction and enhance the chemical stability of phenolic compounds to ensure the bioactivity of food formulations.</p
    corecore