10,921 research outputs found
Discovering Functional Communities in Dynamical Networks
Many networks are important because they are substrates for dynamical
systems, and their pattern of functional connectivity can itself be dynamic --
they can functionally reorganize, even if their underlying anatomical structure
remains fixed. However, the recent rapid progress in discovering the community
structure of networks has overwhelmingly focused on that constant anatomical
connectivity. In this paper, we lay out the problem of discovering_functional
communities_, and describe an approach to doing so. This method combines recent
work on measuring information sharing across stochastic networks with an
existing and successful community-discovery algorithm for weighted networks. We
illustrate it with an application to a large biophysical model of the
transition from beta to gamma rhythms in the hippocampus.Comment: 18 pages, 4 figures, Springer "Lecture Notes in Computer Science"
style. Forthcoming in the proceedings of the workshop "Statistical Network
Analysis: Models, Issues and New Directions", at ICML 2006. Version 2: small
clarifications, typo corrections, added referenc
- …