105 research outputs found

    High field electro-thermal transport in metallic carbon nanotubes

    Full text link
    We describe the electro-thermal transport in metallic carbon nanotubes (m-CNTs) by a semi-classical approach that takes into account the high-field dynamical interdependence between charge carrier and phonon populations. Our model is based on the self-consistent solution of the Boltzmann transport equation and the heat equation mediated by a phonon rate equation that accounts for the onset of non-equilibrium (optical) phonons in the high-field regime. Given the metallic nature of the nanostructures, a key ingredient of the model is the assumption of local thermalization of charge carriers. Our theory remarkably reproduces the room temperature electrical characteristics of m-CNTs on substrate and free standing (suspended), shedding light on charge-heat transport in these one dimensional nanostructures. In particular, the negative differential resistance observed in suspended m-CNTs under electric stress is attributed to inhomogeneous field profile induced by self-heating rather than the presence of hot phonons.Comment: 10 pages, 10 figure

    Restricted Wiedemann-Franz law and vanishing thermoelectric power in one-dimensional conductors

    Full text link
    In one-dimensional (1D) conductors with linear E-k dispersion (Dirac systems) intrabranch thermalization is favored by elastic electron-electron interaction in contrast to electron systems with a nonlinear (parabolic) dispersion. We show that under external electric fields or thermal gradients the carrier populations of different branches, treated as Fermi gases, have different temperatures as a consequence of self-consistent carrier-heat transport. Specifically, in the presence of elastic phonon scattering, the Wiedemann-Franz law is restricted to each branch with its specific temperature and is characterized by twice the Lorenz number. In addition thermoelectric power vanishes due to electron-hole symmetry, which is validated by experiment.Comment: 10 pages, 2 figure

    Band-Engineered LaFeO3_{3}-LaNiO3_{3} Thin Film Interfaces for Electrocatalysis of Water

    Full text link
    Transition metal oxides have generated significant interest for their potential as catalysts for the oxygen evolution reaction (OER) in alkaline environments. Iron and nickel-based perovskite oxides have proven particularly promising, with catalytic over-potentials rivaling precious metal catalysts when the alignment of the valence band relative to the OER reaction potential is tuned through substitutional doping or alloying. Here we report that engineering of band alignment in LaFeO3_{3}/LaNiO3_{3} (LFO/LNO) heterostructures via interfacial doping yields greatly enhanced catalytic performance. Using density functional theory modeling, we predict a 0.2 eV valence band offset (VBO) between metallic LNO and semiconducting LFO that significantly lowers the barrier for hole transport through LFO compared to the intrinsic material and make LFO a p-type semiconductor. Experimental band alignment measurements using in situ X-ray photoelectron spectroscopy of epitaxial LFO/LNO heterostructures agree quite well with these predictions, producing a measured VBO of 0.3(1) eV. OER catalytic measurements on the same samples in alkaline solution show an increase in catalytic current density by a factor of ~275 compared to LFO grown on n-type Nb-doped SrTiO3_{3}. These results demonstrate the power of tuning band alignments through interfacial band engineering for improved catalyticComment: 13 pages, 5 figures; Supplemental info: 5 pages, 5 figure

    Immune correlates of aging in outdoor-housed captive rhesus macaques (\u3ci\u3eMacaca mulatta\u3c/i\u3e)

    Get PDF
    Background Questions remain about whether inflammation is a cause, consequence, or coincidence of aging. The purpose of this study was to define baseline immunological characteristics from blood to develop a model in rhesus macaques that could be used to address the relationship between inflammation and aging. Hematology, flow cytometry, clinical chemistry, and multiplex cytokine/chemokine analyses were performed on a group of 101 outdoor-housed captive rhesus macaques ranging from 2 to 24 years of age, approximately equivalent to 8 to 77 years of age in humans. Results These results extend earlier reports correlating changes in lymphocyte subpopulations and cytokines/chemokines with increasing age. There were significant declines in numbers of white blood cells (WBC) overall, as well as lymphocytes, monocytes, and polymorphonuclear cells with increasing age. Among lymphocytes, there were no significant declines in NK cells and T cells, whereas B cell numbers exhibited significant declines with age. Within the T cell populations, there were significant declines in numbers of CD4+ naΓ―ve T cells and CD8+ naΓ―ve T cells. Conversely, numbers of CD4+CD8+ effector memory and CD8+effector memory T cells increased with age. New multiplex analyses revealed that concentrations of a panel of ten circulating cytokines/chemokines, IFNΞ³, IL1b, IL6, IL12, IL15, TNFΞ±, MCP1, MIP1Ξ±, IL1ra, and IL4, each significantly correlated with age and also exhibited concordant pairwise correlations with every other factor within this group. To also control for outlier values, mean rank values of each of these cytokine concentrations in relation to age of each animal and these also correlated with age. Conclusions A panel of ten cytokines/chemokines were identified that correlated with aging and also with each other. This will permit selection of animals exhibiting relatively higher and lower inflammation status as a model to test mechanisms of inflammation status in aging with susceptibility to infections and vaccine efficacy

    In Vivo Binding and Retention of CD4-Specific DARPin 57.2 in Macaques

    Get PDF
    The recently described Designed Ankyrin Repeat Protein (DARPin) technology can produce highly selective ligands to a variety of biological targets at a low production cost.To investigate the in vivo use of DARPins for future application to novel anti-HIV strategies, we identified potent CD4-specific DARPins that recognize rhesus CD4 and followed the fate of intravenously injected CD4-specific DARPin 57.2 in rhesus macaques. The human CD4-specific DARPin 57.2 bound macaque CD4(+) cells and exhibited potent inhibitory activity against SIV infection in vitro. DARPin 57.2 or the control E3_5 DARPin was injected into rhesus macaques and the fate of cell-free and cell-bound CD4-specific DARPin was evaluated. DARPin-bound CD4(+) cells were detected in the peripheral blood as early as 30 minutes after the injection, decreasing within 6 hours and being almost undetectable within 24 hours. The amount of DARPin bound was dependent on the amount of DARPin injected. CD4-specific DARPin was also detected on CD4(+) cells in the lymph nodes within 30 minutes, which persisted with similar kinetics to blood. More extensive analysis using blood revealed that DARPin 57.2 bound to all CD4(+) cell types (T cells, monocytes, dendritic cells) in vivo and in vitro with the amount of binding directly proportional to the amount of CD4 on the cell surface. Cell-free DARPins were also detected in the plasma, but were rapidly cleared from circulation.We demonstrated that the CD4-specific DARPin can rapidly and selectively bind its target cells in vivo, warranting further studies on possible clinical use of the DARPin technology

    Increased Monocyte Turnover from Bone Marrow Correlates with Severity of SIV Encephalitis and CD163 Levels in Plasma

    Get PDF
    Cells of the myeloid lineage are significant targets for human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in monkeys. Monocytes play critical roles in innate and adaptive immunity during inflammation. We hypothesize that specific subsets of monocytes expand with AIDS and drive central nervous system (CNS) disease. Additionally, there may be expansion of cells from the bone marrow through blood with subsequent macrophage accumulation in tissues driving pathogenesis. To identify monocytes that recently emigrated from bone marrow, we used 5-bromo-2β€²-deoxyuridine (BrdU) labeling in a longitudinal study of SIV-infected CD8+ T lymphocyte depleted macaques. Monocyte expansion and kinetics in blood was assessed and newly migrated monocyte/macrophages were identified within the CNS. Five animals developed rapid AIDS with differing severity of SIVE. The percentages of BrdU+ monocytes in these animals increased dramatically, early after infection, peaking at necropsy where the percentage of BrdU+ monocytes correlated with the severity of SIVE. Early analysis revealed changes in the percentages of BrdU+ monocytes between slow and rapid progressors as early as 8 days and consistently by 27 days post infection. Soluble CD163 (sCD163) in plasma correlated with the percentage of BrdU+ monocytes in blood, demonstrating a relationship between monocyte activation and expansion with disease. BrdU+ monocytes/macrophages were found within perivascular spaces and SIVE lesions. The majority (80–90%) of the BrdU+ cells were Mac387+ that were not productively infected. There was a minor population of CD68+BrdU+ cells (<10%), very few of which were infected (<1% of total BrdU+ cells). Our results suggest that an increased rate of monocyte recruitment from bone marrow into the blood correlates with rapid progression to AIDS, and the magnitude of BrdU+ monocytes correlates with the severity of SIVE
    • …
    corecore