228 research outputs found

    DOE and ANN models for powder mixture packing

    Get PDF
    Design of experiments (DOE) and artificial neural network (ANN) techniques were used to study packing of fused alumina powders composed of three different sizes of particles. The first is the mixture design technique that produces a polynomial model of the powder-packing system. While, the ANN technique is extensively used to model complex systems in many fields. The methodological approach used is mixture design, which can be used to study the influences of two or more additives. It is a structured and organized method for determining the relationship between the components and the output of that process. The mixture design approach permits optimization of size distribution to obtain a target value of porosity. Sensitivity analysis involves the use of the developed ANN model to predict outputs (porosity) at varying levels of the input factor effects

    Fracture behaviour of refractory ceramics after cyclic thermal shock

    Get PDF
    Two commercially available refractory ceramic materials primary used as substrates for fast firing of porcelain stoneware were investigated. The first one, commercially known as CONC, contains cordierite and mullite in the ratio 50:50. The REFO refractory composite material with coarser microstructure compared to CONC has a cordierite-to-mullite ratio of 50:45 and the balance is filled by quartz. Both materials were exposed to water-quench tests from 1250 degrees C, applying various numbers of thermal cycles (shocks). Subsequently the fracture toughness was evaluated on both as-received and shocked samples using the Chevron notched specimen technique. The results were analysed with respect to the microstructure damage caused by the thermal loading. Scanning electron microscopy was used to analyse both microstructure and fracture surfaces in samples with different thermal loading history

    Graphite/epoxy composite for building Bipolar Plates

    Get PDF
    Bipolar plates (BPs) are important components of Proton Exchange Membrane Fuel Cells (PEMFC). Graphite-epoxy composites, having a better corrosion resistance than metal-based BPs and better mechanical properties than graphite BPs, are a promising alternative. In this study, we tried to develop graphite-epoxy composites meeting the technical US DOE targets for 2020, with a proper choice of manufacturing conditions that ensure a good compromise between conductivity, flexural strength, and gas permeability. In particular, we studied the influence of the filler to binder ratio, changed the molding temperature and time, and investigated the effects of increasing pressure both on in-plane conductivity and on helium permeability. We found that both formulation and molding pressure are crucial in determining the permeability of the graphite-epoxy composites, whereas molding temperature and time seem to play a minor role

    Reologìa de suspensiones de esmaltes cerámicos para monococción: estudio de la influencia de los aditivos utilizados.

    Get PDF
    En este trabajo se presentan los resultados obtenidos a partir de la caracterización y el estudio del comportamiento reológico de suspensiones de fritas cerámicas para la elaboración de esmaltes para baldosas de monococión porosa.En particular se evidencian los efectos que los distintos componentes y aditivo, ejercen sobre los parámetros reológicos que oontrolan las fases de preparacion y de aplicació

    Gres porcelanico: aplicaciones arquitectonicas, procesado ypropiedades fisico - mecanicas [Porcelainized stoneware: architectural, processing and physico-mechanical properties]

    Get PDF
    Porcelainized stoneware is an extremely hard and homogeneous unglazed ceramic material obtained by fast-firing of kaolinitic ceramic bodies containing a large amount of fluxes. The obtained tiles, available in a large variety of colours, shape size and surface finish, are characterized by very low porosity (<0.3wt% expressed as wafer absorption) and are ideal for heavy-traffic areas subject to mechanical and chemical stresses. Porcelainized stoneware tiles offer alternative valid (and in many cases necessary) solutions to the traditional glazed tiles either for interiors or for exteriors both in modem or classic constructions for flooring and covering.Porcelainized stoneware is an extremely hard and homogeneous unglazed ceramic material obtained by fast-firing of kaolinitic ceramic bodies containing a large amount of fluxes. The obtained tiles, available in a large variety of colours, shape size and surface finish, are characterized by very low porosity (<0.3wt% expressed as wafer absorption) and are ideal for heavy-traffic areas subject to mechanical and chemical stresses. Porcelainized stoneware tiles offer alternative valid (and in many cases necessary) solutions to the traditional glazed tiles either for interiors or for exteriors both in modem or classic constructions for flooring and covering.El gres porcelanico es un material ceramico muy duro yhomogeneo, no vidriado en su superficie, obtenido porcoccion rapida de composiciones ricas en caolinita,conteniendo una gran cantidad de fundentes. Las plaquetasde pavimentos que se obtienen son de una variedad muyextensa en aspectos, disenos y colores, caracterizandose,fundamentalmente, por su muy baja porosidad (<0,3wt%,expresado en porcentaje de capacidad de absorcion deagua). Estos material es son ideal es para trafico pesado enareas sujetas a intensas tensiones mecanicas y quimicas. Elgres porcelanico ofrece altemativas vdlidas (y, en muchoscasos, soluciones necesarias) a los pavimentos vidriadostradicionales, en interiores o para usos exteriores, amboscon decoraciones modernas o clasicas para suelos orecubrimientos de paredes

    Effect of the suspension composition on the microstructural properties of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings

    Get PDF
    Seven different Al2O3-based suspensions were prepared by dispersing two nano-sized Al2O3 powders (having analogous size distribution and chemical composition but different surface chemistry), one micron-sized powder and their mixtures in a water+isopropanol solution. High velocity suspension flame sprayed (HVSFS) coatings were deposited using these suspensions as feedstock and adopting two different sets of spray parameters. The characteristics of the suspension, particularly its agglomeration behaviour, have a significant influence on the coating deposition mechanism and, hence, on its properties (microstructure, hardness, elastic modulus). Dense and very smooth (Ra ~ 1.3 μm) coatings, consisting of well- flattened lamellae having a homogeneous size distribution, are obtained when micron-sized (~1 -2 μm) powders with low tendency to agglomeration are employed. Spray parameters favouring the break-up of the few agglomerates present in the suspension enhance the deposition efficiency (up to >50%), as no particle or agglomerate larger than ~2.5 μm can be fully melted. Nano-sized powders, by contrast, generally form stronger agglomerates, which cannot be significantly disrupted by adjusting the spray parameters. If the chosen nanopowder forms small agglomerates (up to few microns), the deposition efficiency is satisfactory and the coating porosity is limited, although the lamellae generally have a wider size distribution, so that roughness is somewhat higher. If the nanopowder forms large agglomerates (on account of its surfacechemistry), poor deposition efficiencies and porous layers are obtained. Although suspensions containing the pure micron-sized powder produce the densest coatings, the highest deposition efficiency (~70%) is obtained by suitable mixtures of micron-and nano-sized powders, on account of synergistic effect

    Characterization of natural clays from italian deposits with focus on elemental composition and exchange estimated by edx analysis: potential pharmaceutical and cosmetic uses

    Get PDF
    Purification processes performed on natural clays to select specific clay minerals are complex and expensive and can lead to over-exploitation of some deposits. The present study aimed to examine physicochemical (mineralogy, morphology, size, surface charge, chemical composition, cation exchange capacity [CEC], and pH) and hydration (swelling, wettability, water sorption, and rheological behavior) properties of three native clays from Italian deposits for potential pharmaceutical and cosmetic uses due to the presence of phyllosilicate minerals. Particular emphasis was placed on energy dispersive X-ray (EDX) microanalysis coupled with the ‘cesium method’ to assay clay elemental composition and CEC. One bentonite of volcanic origin (BNT) and two kaolins, one of hydrothermal origin (K-H) and another of lacustrine-fluvial origin (K-L), were evaluated in comparison with a commercial, purified bentonite. The CEC assay revealed the complete substitution of exchangeable cations (Na+ and Ca2+) by Cs+ in BNT samples and CEC values consistent with those of typical smectites (100.64 7.33 meq/100 g). For kaolins, partial substitution of Na+ cations occurred only in the K-L samples because of the interstratified mineral component which has small CEC values (11.13 5.46 meq/100 g for the K-H sample and 14.75 6.58 meq/100 g for the K-L sample). The degree of isomorphous substitution of Al3+ by Mg2+ affected the hydration properties of BNT in terms of swelling, water sorption, and rheology, whereas both of the poorly expandable kaolins exhibited significant water-adsorption properties. The EDX microanalysis has proved to be of considerable interest in terms of providing more information about clay properties in comparison with other commonly used methods and to identify the role played by both chemical and mineralogical composition of natural clays for their appropriate use in pharmaceutical and cosmetic fields

    Experimental assessment and predictive model of the performance of Ti-based nanofluids

    Get PDF
    The need for innovative propulsion technologies (e.g., fuel cells) in the mobility sector is posing a higher-than-ever burden on thermal management. When low operative temperature shall be ensured, dissipation of a significant amount of heat is requested, together with limited temperature variation of the coolant; mobile applications also yield limitations in terms of space available for cooling subsystems. Nanofluids have recently become one of the most promising solutions to replace conventional coolants. However, the prediction of their effectiveness in terms of heat-transfer enhancement and required pumping power still appears a challenge, being limited by the lack of a general methodology that assesses them simultaneously in various flow regimes. To this end, an experiment was developed to compare a conventional coolant (ethylene glycol/water) and a TiO2-based nanofluid (1% particle loading), focusing on heat transfer and pressure loss. The experimental dataset was used as an input for a physical model based on two independent figures of merit, aiming at an a priori evaluation of the potential simultaneous gain in heat transfer and parasitic power. The model showed conditions of combined gain specifically for the laminar flow regime, whereas turbulent flows proved inherently associated to higher pumping power; overall, criteria are presented to evaluate nanofluid performance as compared to that of conventional coolants. The model is generally applicable to the design of cooling systems and emphasizes laminar flow regime as promising in conjunction with the use of nanofluids, proposing indices for a quantitative a priori evaluation and leading to an advancement with respect to an a posteriori assessment of their performance
    • …
    corecore